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Let Sy, denote the set of n x n real symmetric matrices, S~ denote
the cone of n xn real symmetric positive semidefinite matrices and
N, denote the cone of symmetric nonnegative n X n matrices.

e The cone of n x n doubly nonnegative (DNN) matrices is then

e The cone of n x n completely positive (CP) matrices is
Cn = {X | X = AA' for some n x k nonnegative matrix A}.

e Dual of C,, is the cone of n X n copositive matrices,

Ci={XeS,|y! Xy>0vVye R}

Clear that
Ch CDp, Di=ST+N,CC,

and these inclusions are in fact strict for n > 4.
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Goal: Given a matrix X € Dy, \ Cp, separate X from Cj, using a
matrix V € C;; having V e X < 0.

Why Bother?

e [Bur09] shows that broad class of NP-hard problems can be
posed as linear optimization problems over C,,.

e D, is a tractable relaxation of C,,. Expect that solution of
relaxed problem will be X € Dy, \ Cy,.

e Note that least n where problem occurs is n = 5.
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For X € S, let G(X) denote the undirected graph on vertices
{1,...,n} with edges {{i # j} | X;; # 0}.
Definition 1. Let G be an undirected graph on n vertices.

Then G is called a CP graph if any matrizc X € D, with
G(X) =G also has X € Cy,.

The main result on CP graphs is the following:

Proposition 1. |KB93| An undirected graph on n vertices is
a CP graph if and only if it contains no odd cycle of length 5
or greater.
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In [BADO09] it is shown that:

e Fixtreme rays of Dy are either rank-one matrices in Cs, or rank-
three “extremely bad” matrices where G(X) is a b-cycle (every
vertex in G(X) has degree two).

e Any such extremely bad matrix can be separated from Cr by a
transformation of the Horn matrix

( 1 -1 1 1_—1\

-1 1-1 1 1

H = 1 -1 1-1 1 ECg\Dg.

1 1 -1 1-1

\ -1 1 1-1 1)
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[n [DA10] show that:

e Separation procedure based on transformed Horn matrix ap-
plies to X € D5 \ Cs where X has rank three and G(X) has

at least one vertex of degree 2.

e More general separation procedure applies to any X € D5\ Cs
that is not componentwise strictly positive.

An even more general separation procedure that applies to any

X € D5\ Cs is described in [BD10]. In this talk we will describe
the procedure from [DA10] for X € D5\ C5, X # 0, and its
generalization to larger matrices having block structure.
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A separation procedure for the 5 x 5 case

Assume that X € Dy, X # 0. After a symmetric permutation
and diagonal scaling, X may be assumed to have the form

X1T1 ] Qo
ozg 0 1

where X171 € Ds.

Theorem 1. |BX04, Theorem 2.1| Let X € D5 have the form

(1). Then X € Cs if and only if there are matrices Ay and
Aoo such that X171 = A1 + Aso, and

AiiO"é )
D = 1.2.
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In [BX04], Theorem 1 is utilized only as a proof mechanism, but
we now show that it has algorithmic consequences as well.
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Theorem 2. Assume that X € Ds has the form (1). Then
X € D5\ Cs if and only if there is a matrix

Vi1 51 B2

V .
V = 6? v1 0 such that (51% 52.)67)1, 1= 1,2,
B30 p
and V e X < 0.

e Suppose that X € D5\ C5, and V' are as in Theorem 2. If
X € (5 is another matrix of the form (1), then Theorem 1
implies that V e X > 0.

e However cannot conclude that V' € C; because VeX > 0only
holds for X of the form (1), in particular, 245 = 0.

e Fortunately, by [HJR05, Theorem 1], V' can easily be “com-
pleted” to obtain a copositive matrix that still separates X

from Cs,.



Theorem 3. Suppose that X € Ds\ Cs has the form (1), and
V' satisfies the conditions of Theorem 2. Define

Vi1 f1 52
Vis)=| 8L m s
By s 7
Then V(s) e X <0 for any s, and V(s) € C: for s > /7172



Separation for larger matrices with block structure

Procedure for 5 case where X % 0 can be generalized to larger
matrices with block structure. Assume X has the form

(X113 X192 X153 ... X1, )

Xiy Xoo 0 ... 0
X = X% 0 - - : (2)
: ST
\X{;, 0 ... 0 Xpy)

where k£ > 3, each Xj; is an n; X n; matrix, and Zle n; = n.



Lemma 1. Suppose that X € D, has the form (2), k > 3,

and let vy
XZ'—( H 1i),i—2,...,k.
Xy Xy

Then X € Cy, if and only if there are matrices Aj;, 1 =2,...,k
such that ZLQ A;; = Xq1, and

(Au' X1
XL Xy
Moreover, if G(Xi) is a CP graph for each 1 = 2,...,k,
then the above statement remains true with Cn,1n, replaced
by Dn1+ni-

)ECn1+ni, ZZQ,,]{



Theorem 4. Suppose that X € Dy \ Cy has the form (2),
where G(X") is a CP graph, i = 2,..., k. Then there is a
matrix V', also of the form (2), such that

Vi1 Vu) . .
6 D .7 Z — 2, e o o 7 k7
(Vg Vi e

and V e X < 0. Moreover, if v; = diag(Diag(Vi;)?), then the
matrix

~ Vipg - Vip

v — . . . :

T . :
Vlk « .. ka

wherevf,;j:vﬂjT,QSi#jgk, has V € Cf and V e X =
VeX <0.
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a cut V separating X from Cp, is found, then Ve X ~ Ve X <
0, and V is very likely to also separate X from C,,.



Note that:

e Matrix X may have numerical entries that are small but not
exactly zero. Can then apply Lemma 1 to perturbed matrix X
where entries of X below a specified tolerance are set to zero. It

a cut V separating X from Cp, is found, then Ve X ~ Ve X <
0, and V is very likely to also separate X from C,,.

e Theorem 4 may provide a cut separating a given X € Dy, \ Cp,
even when the sufficient conditions for generating such a cut
are not satisfied. In particular, a cut may be found even when
the condition that X is a CP graph for each 7 is not satisfied.



A second case where block structure can be used to generate cuts
for a matrix X € Dy, \ Cp, is when X has the form

(1 X1 X13 ... X1k )
XL T Xog ... Xy
X — XT Xg; . | (3)
e A=k
\XT XT X(Tk e I J

where k > 2, each X;; is an n; X n; matrix, and Zle n;, = n.
The structure in (3) corresponds to a partitioning of the vertices

{1,2,...,n} into k stable sets in G(X), of size nq, ..

., N (note
that n; = 1 is allowed).
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Applications

Example 1: Consider the box-constrained QP problem

(QPB) max 2! Qz + ¢«
s.t. 0 <z <e.

To describe a CP-formulation of QPB, define matrices

T T

T 1 z* s
Y—(xX>, YT=|2 X Z
sz s

By the result of [Bur09], QPB can then be written in the form

(QPBep) max Qe X + ¢!
st. v+s=e, Diag(X+2Z2+5)=ce,
YT e Conyr.
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Replacing Coy, 11 with Doy, 11 gives tractable DNN relaxation.

e Can be shown that DNN relaxation is equivalent to “SDP-+RLT"
relaxation, and for n = 2 problem is equivalent to QPB [AB10].

e Constraints from Boolean Quadric Polytope (BQP) are valid for
off-diagonal components of X |[BL09|. For n = 3, BQP is com-
pletely determined by triangle inequalities and RLT constraints.
However, can still be a gap when using SDP+RLT+TRI relax-
ation.

e Example from |[BLO9] with n = 3 has optimal value for QPB
of 1.0, value for SDP+RLT+TRI relaxation of 1.093. Solution
matrix Y has 5 x 5 principal submatrix that is not strictly
positive, and is not CP. Can obtain cut from Theorem 3. re-
solve problem, and repeat.



Gap to optimal value
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Figure 1: Gap to optimal value for Burer-Letchford QPB problem (n = 3)
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Example 2: Let A be the adjacency matrix of a graph G on
n vertices, and let a be the maximum size of a stable set in G.

Known [dKP02] that
&_1:min{(I+A)oX:eeTonl,XECn}. (4)
Relaxing C,, to D,, results in the Lovasz-Schrijver bound

(ﬁ/)_lzmin{([+A)oX:eeToX:1,X€Dn}. (5)
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Let G192 be the complement of the graph corresponding to the
vertices of a regular icosahedron [BAK02]. Then o = 3 and ¥/ =~
3.24.

e Using the cone IC%Q to approximate the dual of (4) provides no
improvement [BAK02].

e For the solution matrix X € Djg from (5), cannot find cut
based on first block structure (2). However can find a cut
based on (3). Adding this cut and re-solving, gap to 1/a = %

is approximately 2 x 107°,
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