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CP and DNN matrices

Let Sn denote the set of n×n real symmetric matrices, S+
n denote

the cone of n×n real symmetric positive semidefinite matrices and
Nn denote the cone of symmetric nonnegative n× n matrices.

• The cone of n×n doubly nonnegative (DNN) matrices is then
Dn = S+

n ∩Nn.

• The cone of n× n completely positive (CP) matrices is
Cn = {X |X = AAT for some n× k nonnegative matrix A}.
• Dual of Cn is the cone of n× n copositive matrices,
C∗n = {X ∈ Sn | yTXy ≥ 0 ∀ y ∈ <+

n}.

Clear that

Cn ⊆ Dn, D∗n = S+
n +Nn ⊆ C∗n,

and these inclusions are in fact strict for n > 4.
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Goal: Given a matrix X ∈ Dn \ Cn, separate X from Cn using a
matrix V ∈ C∗n having V •X < 0.

Why Bother?

• [Bur09] shows that broad class of NP-hard problems can be
posed as linear optimization problems over Cn.

• Dn is a tractable relaxation of Cn. Expect that solution of
relaxed problem will be X ∈ Dn \ Cn.

• Note that least n where problem occurs is n = 5.
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For X ∈ Sn let G(X) denote the undirected graph on vertices
{1, . . . , n} with edges {{i 6= j} |Xij 6= 0}.
Definition 1. Let G be an undirected graph on n vertices.
Then G is called a CP graph if any matrix X ∈ Dn with
G(X) = G also has X ∈ Cn.

The main result on CP graphs is the following:

Proposition 1. [KB93] An undirected graph on n vertices is
a CP graph if and only if it contains no odd cycle of length 5
or greater.
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In [BAD09] it is shown that:

• Extreme rays of D5 are either rank-one matrices in C5, or rank-
three “extremely bad” matrices where G(X) is a 5-cycle (every
vertex in G(X) has degree two).

• Any such extremely bad matrix can be separated from C5 by a
transformation of the Horn matrix

H :=


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 ∈ C∗5 \ D∗5 .
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In [DA10] show that:

• Separation procedure based on transformed Horn matrix ap-
plies to X ∈ D5 \ C5 where X has rank three and G(X) has
at least one vertex of degree 2.

•More general separation procedure applies to any X ∈ D5 \ C5
that is not componentwise strictly positive.

An even more general separation procedure that applies to any
X ∈ D5 \ C5 is described in [BD10]. In this talk we will describe
the procedure from [DA10] for X ∈ D5 \ C5, X 6> 0, and its
generalization to larger matrices having block structure.
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Theorem 1. [BX04, Theorem 2.1] Let X ∈ D5 have the form
(1). Then X ∈ C5 if and only if there are matrices A11 and
A22 such that X11 = A11 + A22, and(

Aii αi
αTi 1

)
∈ D4, i = 1, 2.

In [BX04], Theorem 1 is utilized only as a proof mechanism, but
we now show that it has algorithmic consequences as well.
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X ∈ D5 \ C5 if and only if there is a matrix

V =

V11 β1 β2

βT1 γ1 0

βT2 0 γ2

 such that

(
V11 βi
βTi γi

)
∈ D∗4 , i = 1, 2,

and V •X < 0.

• Suppose that X ∈ D5 \ C5, and V are as in Theorem 2. If
X̃ ∈ C5 is another matrix of the form (1), then Theorem 1
implies that V • X̃ ≥ 0.

• However cannot conclude that V ∈ C∗5 because V •X̃ ≥ 0 only

holds for X̃ of the form (1), in particular, x̃45 = 0.

• Fortunately, by [HJR05, Theorem 1], V can easily be “com-
pleted” to obtain a copositive matrix that still separates X
from C5.



Theorem 3. Suppose that X ∈ D5 \ C5 has the form (1), and
V satisfies the conditions of Theorem 2. Define

V (s) =

V11 β1 β2

βT1 γ1 s

βT2 s γ2

 .

Then V (s) •X < 0 for any s, and V (s) ∈ C∗5 for s ≥ √γ1γ2.



Separation for larger matrices with block structure

Procedure for 5 case where X 6> 0 can be generalized to larger
matrices with block structure. Assume X has the form

X =


X11 X12 X13 . . . X1k

XT
12 X22 0 . . . 0

XT
13 0 . . . . . . ...
... ... . . . . . . 0

XT
1k 0 . . . 0 Xkk

 , (2)

where k ≥ 3, each Xii is an ni × ni matrix, and
∑k
i=1 ni = n.



Lemma 1. Suppose that X ∈ Dn has the form (2), k ≥ 3,
and let

Xi =

(
X11 X1i

XT
1i Xii

)
, i = 2, . . . , k.

Then X ∈ Cn if and only if there are matrices Aii, i = 2, . . . , k
such that

∑k
i=2Aii = X11, and(
Aii X1i

XT
1i Xii

)
∈ Cn1+ni, i = 2, . . . , k.

Moreover, if G(Xi) is a CP graph for each i = 2, . . . , k,
then the above statement remains true with Cn1+ni replaced
by Dn1+ni.



Theorem 4. Suppose that X ∈ Dn \ Cn has the form (2),
where G(Xi) is a CP graph, i = 2, . . . , k. Then there is a
matrix V , also of the form (2), such that(

V11 V1i

V T1i Vii

)
∈ D∗n1+ni, i = 2, . . . , k,

and V • X < 0. Moreover, if γi = diag(Diag(Vii)
.5), then the

matrix

Ṽ =

V11 . . . V1k
... . . . ...

V T1k . . . Vkk

 ,

where Vij = γiγ
T
j , 2 ≤ i 6= j ≤ k, has Ṽ ∈ C∗n and Ṽ • X =

V •X < 0.



Note that:
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•Matrix X may have numerical entries that are small but not
exactly zero. Can then apply Lemma 1 to perturbed matrix X̃
where entries of X below a specified tolerance are set to zero. If
a cut V separating X̃ from Cn is found, then V •X ≈ V •X̃ <
0, and V is very likely to also separate X from Cn.



Note that:

•Matrix X may have numerical entries that are small but not
exactly zero. Can then apply Lemma 1 to perturbed matrix X̃
where entries of X below a specified tolerance are set to zero. If
a cut V separating X̃ from Cn is found, then V •X ≈ V •X̃ <
0, and V is very likely to also separate X from Cn.

• Theorem 4 may provide a cut separating a given X ∈ Dn \ Cn
even when the sufficient conditions for generating such a cut
are not satisfied. In particular, a cut may be found even when
the condition that Xi is a CP graph for each i is not satisfied.



A second case where block structure can be used to generate cuts
for a matrix X ∈ Dn \ Cn is when X has the form

X =


I X12 X13 . . . X1k

XT
12 I X23 . . . X2k

XT
13 XT

23
. . . . . . ...

... ... . . . . . . X(k−1)k

XT
1k X

T
2k . . . XT

(k−1)k
I

 , (3)

where k ≥ 2, each Xij is an ni × nj matrix, and
∑k
i=1 ni = n.

The structure in (3) corresponds to a partitioning of the vertices
{1, 2, . . . , n} into k stable sets in G(X), of size n1, . . . , nk (note
that ni = 1 is allowed).
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Applications

Example 1: Consider the box-constrained QP problem

(QPB) max xTQx + cTx

s.t. 0 ≤ x ≤ e.

To describe a CP-formulation of QPB, define matrices

Y =

(
1 xT

x X

)
, Y + =

1 xT sT

x X Z

s ZT S

 .

By the result of [Bur09], QPB can then be written in the form

(QPBCP) max Q •X + cTx

s.t. x + s = e, Diag(X + 2Z + S) = e,

Y + ∈ C2n+1.
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Replacing C2n+1 with D2n+1 gives tractable DNN relaxation.

• Can be shown that DNN relaxation is equivalent to “SDP+RLT”
relaxation, and for n = 2 problem is equivalent to QPB [AB10].

• Constraints from Boolean Quadric Polytope (BQP) are valid for
off-diagonal components of X [BL09]. For n = 3, BQP is com-
pletely determined by triangle inequalities and RLT constraints.
However, can still be a gap when using SDP+RLT+TRI relax-
ation.

• Example from [BL09] with n = 3 has optimal value for QPB
of 1.0, value for SDP+RLT+TRI relaxation of 1.093. Solution
matrix Y + has 5 × 5 principal submatrix that is not strictly
positive, and is not CP. Can obtain cut from Theorem 3, re-
solve problem, and repeat.
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Figure 1: Gap to optimal value for Burer-Letchford QPB problem (n = 3)
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Example 2: Let A be the adjacency matrix of a graph G on
n vertices, and let α be the maximum size of a stable set in G.
Known [dKP02] that

α−1 = min
{

(I + A) •X : eeT •X = 1, X ∈ Cn
}
. (4)

Relaxing Cn to Dn results in the Lovász-Schrijver bound

(ϑ′)−1 = min
{

(I + A) •X : eeT •X = 1, X ∈ Dn
}
. (5)
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Let G12 be the complement of the graph corresponding to the
vertices of a regular icosahedron [BdK02]. Then α = 3 and ϑ′ ≈
3.24.

• Using the cone K1
12 to approximate the dual of (4) provides no

improvement [BdK02].

• For the solution matrix X ∈ D12 from (5), cannot find cut
based on first block structure (2). However can find a cut
based on (3). Adding this cut and re-solving, gap to 1/α = 1

3
is approximately 2× 10−8.
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