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The QCQP problem

Consider a quadratically constrained quadratic program:

(QCQP) z∗ = min f0(x)

s.t. fi(x) ≤ di, i = 1, . . . , q

x ≥ 0, Ax ≤ b,

where fi(x) = xTQix+ cTi x, i = 0, 1, . . . , q, each Qi is an n× n
symmetric matrix, and A is an m× n matrix.
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where fi(x) = xTQix+ cTi x, i = 0, 1, . . . , q, each Qi is an n× n
symmetric matrix, and A is an m× n matrix.

Let F = {x ≥ 0 : Ax ≤ b}; assume throughout F bounded.

IfQi � 0 for each i, QCQP is a convex programming problem that
can be solved in polynomial time, but in general the problem is
NP-Hard. QCQP is a fundamental global optimization problem.
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Let QCQP denote problem where X = xxT is replaced by

Y (x,X) :=

(
1 xT

x X

)
∈ C.
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Have two convexifications:

( ̂QCQP) ẑ = min f̂0(x)

s.t. f̂i(x) ≤ di, i = 1, . . . , q

x ≥ 0, Ax ≤ b.

(QCQP) z̄ = min Q0 •X + cT0 x

s.t. Qi •X + cTi x ≤ di, i = 1, . . . , q

Y (x,X) ∈ C.

Claim: ẑ ≤ z̄.

To prove the claim, must relate the different convexifications used
to construct ̂QCQP and QCQP.
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so that QCQP corresponds to ̂QCQP with the added constraints
X0 = X1 = . . . = Xq.

Corollary 1. Let ẑ and z̄ denote solution values in convex
relaxations ̂QCQP and QCQP, respectively. Then ẑ ≤ z̄.
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1 ≥
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1 ≤ −
1
2, and convex lower

envelope on [0, 1] is −x1. Relaxation ̂QCQP is then

min x2
1

s.t. −x1 ≤ −1
2

0 ≤ x1 ≤ 1.

Solution value is ẑ = 1
4. The solution value for QCQP is z̄ = z∗ =

1
2. For x1 = 1

2, Y (x1, x11) ∈ C for x11 ∈ [14,
1
2]. The solution of̂QCQP corresponds to using x1 = 1

2 along with x11 = 1
4 for the

objective, and x11 = 1
2 for the single nonlinear constraint.



Figure 1: Set C for example



Two computable relaxations

For a quadratic function f (x) = xTQx + cTx defined on F =
{x : 0 ≤ x ≤ e}, the well-known αBB underestimator is
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where α ∈ <n+ has Q + Diag(α) � 0. Since fα(·) is convex,

fα(x) ≤ f̂ (x), 0 ≤ x ≤ e.
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A further relaxation of ̂QCQP is then given by:

(QCQPαBB) zαBB = min xT (Q0 + Diag(α0))x + (c0 − α0)Tx

s.t. xT (Qi + Diag(αi))x + (ci − αi)Tx ≤ di,
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0 ≤ x ≤ e,

where each αi is chosen so that Qi + Diag(αi) � 0.
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For F = {x : 0 ≤ x ≤ e}, there are a variety of known con-
straints that are valid for Y (x,X) ∈ C:

1. The constraints from the Reformulation-Linearization Tech-
nique (RLT);

{0, xi + xj − 1} ≤ xij ≤ {xi, xj}.

2. The semidefinite programming (SDP) constraint Y (x,X) � 0;

3. Constraints on the off-diagonal components of Y (x,X) coming
from the Boolean Quadric Polytope (BQP), for example, the
triangle inequalities for i 6= j 6= k,

xi + xj + xk ≤ xij + xik + xjk + 1,

xij + xik ≤ xi + xjk,

xij + xjk ≤ xj + xik,

xik + xjk ≤ xk + xij.



Consider relaxation that imposes Y (x,X) � 0 together with the
diagonal RLT constraints diag(X) ≤ x. Note that these condi-
tions together imply the original bound constraints 0 ≤ x ≤ e.
Result is:

(QCQPSDP) zSDP = min Q0 •X + cT0 x

s.t. Qi •X + cTi x ≤ di, i = 1, . . . , q

Y (x,X) � 0, diag(X) ≤ x.



Consider relaxation that imposes Y (x,X) � 0 together with the
diagonal RLT constraints diag(X) ≤ x. Note that these condi-
tions together imply the original bound constraints 0 ≤ x ≤ e.
Result is:

(QCQPSDP) zSDP = min Q0 •X + cT0 x

s.t. Qi •X + cTi x ≤ di, i = 1, . . . , q

Y (x,X) � 0, diag(X) ≤ x.

Goal is to relate QCQPαBB and QCQPSDP. The following theo-
rem shows that there is a simple relationship between the convex-
ifications used to construct these problems.
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Theorem 2. For 0 ≤ x ≤ e, let fα(x) = xT (Q + Diag(α))x +
(c − α)Tx, where α ≥ 0 and Q + Diag(α) � 0. Assume that
Y (x,X) � 0, diag(X) ≤ x. Then fα(x) ≤ Q •X + cTx.

Immediate corollary proves relationship between QCQPαBB and
QCQPSDP first conjectured by Jeff Linderoth.

Corollary 2. Let zαBB and zSDP denote the solution values in
the convex relaxations QCQPαBB and QCQPSDP, respectively.
Then zαBB ≤ zSDP.
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Consider quadratic function f (x) = xTQx + cTx, and vj ∈ <n,

j = 1, . . . , k. Assume for x ∈ F , lj ≤ vTj x ≤ uj. Follows that

(vTj x− lj)(v
T
j x− uj) ≤ 0, or (vTj x)2− (lj + uj)v

T
j x+ ljuj ≤ 0.

For α ∈ <k+, define

Q(α) = Q +

k∑
j=1

αjvjv
T
j ,

c(α) = c−
k∑
j=1

αj(lj + uj)vj,

p(α) =

k∑
j=1

αjljuj,

and let fα(x) = xTQ(α)x + c(α)Tx + p(α).
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If Q(α) � 0, fα(·) is a convex underestimator for f (·) on F .
Zheng, Sun and Li (2009) refer to functions of the form fα(·) as
DC underestimators, and apply them to convexify the objective
in QCQP problems with only linear constraints (q = 0).

Note that the αBB underestimator on 0 ≤ x ≤ e corresponds to
vj = ej, lj = 0, uj = 1, j = 1, . . . , n. Additional possiblities for
vj include:

• eigenvectors corresponding to negative eigenvalues of Q,

• transposed rows of the constraint matrix A.



Using underestimators of the form fα(·), obtain convex relaxation

(QCQPDC) zDC = min xTQ0(α0)x + c0(α0)Tx + p(α0)

s.t. xTQi(αi)x + ci(αi)
Tx + p(αi) ≤ di,

i = 1, . . . , q

x ≥ 0, Ax ≤ b,

where each αi ∈ <k+ is chosen so that Qi(αi) � 0.
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(QCQPDC) zDC = min xTQ0(α0)x + c0(α0)Tx + p(α0)

s.t. xTQi(αi)x + ci(αi)
Tx + p(αi) ≤ di,

i = 1, . . . , q

x ≥ 0, Ax ≤ b,

where each αi ∈ <k+ is chosen so that Qi(αi) � 0.

We will compare QCQPDC to a relaxation of QCQP that com-
bines the semidefiniteness condition Y (x,X) � 0 with the RLT
constraints on (x,X) that can be obtained from the original lin-
ear constraints x ≥ 0, Ax ≤ b. Refer to this as the “SDP+RLT”
relaxation.

Theorem 3. Let zDC and zSDP+RLT denote the solution val-
ues in the convex relaxations QCQPDC and QCQPSDP+RLT,
respectively. Then zDC ≤ zSDP+RLT.



Conclusion

Approach of approximating C has substantial advantages over
common methodology of approximating convex lower envelopes,
if solver can handle the constraint Y (x,X) � 0.


