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The QCQP problem

Consider a quadratically constrained quadratic program:
(QCQP) z* = min fy(x)
s.t. file) <d;, i=1,...,q
x>0, Ax <,

where fi(z) = 2! Qz + c;-r:z:, i=0,1,...,q,cach Q;isann X n
symmetric matrix, and A is an m X n matrix.
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Consider a quadratically constrained quadratic program:
(QCQP) z* = min fy(x)
s.t. file) <d;, i=1,...,q
x>0, Ax <,

where fi(z) = 2! Qz + c;-r:z:, i=0,1,...,q,cach Q;isann X n
symmetric matrix, and A is an m X n matrix.

Let F = {x >0 : Ax < b}; assume throughout F bounded.

If ¢); = 0 for each 7z, QCQP is a convex programming problem that
can be solved in polynomial time, but in general the problem is
NP-Hard. QCQP is a fundamental global optimization problem.
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Two Convexifications of QCQP

A common approach to obtaining a lower bound on z* is to some-
how convexity the problem. We consider two different approaches.

For the first, let f;(+) be the convex lower envelope of f;(+) on F,
filz) = max{v'z : v'% < f(&) Vi € F}.

Let Q@QP be the problem where fz() replaces f;(+),2=0,...,q,
and let z be the solution value in QCQP.
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Second approach to convexifying QCQP is based on linearizing the
problem by adding additional variables. Let X denote a symmetric
n X n matrix. Then QCQP can be written

(QCQP) 2z* = min Qpe X +¢{ «
S.t. QiquLcZ-Txgdi, 1=1,...,q
x >0, Axgb,X::mT.

A convexification of QCQP can then be given in terms of the set

e~ ()(1) ser}

Let QCQP denote problem where X = zz:! is replaced by

Y(z, X) = (; ”;?) cC.



Have two convexifications:

(QCQP) 2= min fo(x)
s.t. file)<d;, i=1,...,q
x e F.

(QCQP) z = min Qpe X + COT:C

S.t. QioX%—c;-ra:Sdi, 1 =1,...

Yz, X)eC.
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Have two convexifications:

(QCQP) 2= min fo(x)

(QCQP) z= min Qye X + iz
3.t. QioX%—c;-ra:Sdi, 1=1,...,q
Yz, X)eC.

Claim: z < Z.

To prove the claim, must relate the different convexifications used

to construct Q@@P and QCQP.
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min{Q e X +c'z : Y(z, X)eC}.
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Theorem 1. For x € F, let f(x) = LQr + L, and let
f() be the convex lower envelope of f(-) on F. Then f(x) =
min{Q e X +c'z : Y(z, X)eC}.

Claimed relationship between QCQP and Q@P is an immediate
consequence of Theorem 1. In particular, using Theorem 1, QCQP

could be rewritten in the form
(Q@P) 2= min QuXg+clx
s.t. Q,L'OXZ'—I—CZTJZ <d;, 1=1,...,q
Y, X;)eC,1=0,1,...,q,

so that QCQP corresponds to Q@P with the added constraints
Xo=X1=...= X,

Corollary 1. Let z and Z denote solution values in conver
relarations QCQP and QCQP, respectively. Then z < Z.
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Distinction between QCQP and Q@P is already sharp for m =
n = q = 1. Consider

min x%

S.1. x%z%
0 <z <1.

Written in form of QCQP, x% > % 1S —:z:% < %, and convex lower

envelope on |0, 1] is —x7. Relaxation QCQP is then

min x%
1
O <x < 1.

Solution value is 2 = % The solution value for QCQP is 7z = z* =
%./13)1” T = %, Y(xq1,211) € C for $11 = [1 1] The solution of
QCQP corresponds to using x| = 2 along with r1; = % for the
objective, and r1] = % for the single nonlinear constraint.
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Figure 1: Set C for example



Two computable relaxations

For a quadratic function f(z) = x! Qz + ¢!« defined on F =
{0 <x <e}, the well-known aBB underestimator is

falz) = #"(Q + Diag(a))z + (¢ — )"z,

where a € R has Q + Diag(a) = 0. Since fo(-) is convex,
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Two computable relaxations

For a quadratic function f(z) = x! Qz + ¢!« defined on F =
{z : 0 <2 < e}, the well-known aBB underestimator is

folz) = :CT(Q + Diag(a))x + (¢ — a)T:C,
where o € RY has @ + Diag(o) = 0. Since fa(-) is convex,
folx) < flz),0 <z <e
A further relaxation of Q@QP is then given by:

(QCQPuBB) 2B = min z' (Qp + Diag(ag))z + (cp — ag)’ 2
s.t. ZCT(QZ' + Diag(a;))x + (¢; — Ozi)TZL‘ < d;,
1=1,...,q
0<x<e,

where each «y; is chosen so that @); + Diag(a;) > 0.
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For F = {x : 0 < x < e}, there are a variety of known con-
straints that are valid for Y (z, X) € C:

1. The constraints from the Reformulation-Linearization Tech-

nique (RLT);
{O,ZEZ' T T — 1} < Zjj < {CEZ,CE]}
2. The semidefinite programming (SDP) constraint Y (z, X) = 0;

3. Constraints on the off-diagonal components of Y (x, X') coming
from the Boolean Quadric Polytope (BQP), for example, the
triangle inequalities for ¢ = j # k,

i+ x5+ 2 < T+ a+ o+
Tij + Tipp < T+ Tjg,
Tij + Tjp < Tj+ Ty,
Tif T Tjp < T+ T4



Consider relaxation that imposes Y (x, X)) = 0 together with the
diagonal RLT constraints diag(X) < x. Note that these condi-
tions together imply the original bound constraints 0 < x < e.

Result is:
(QCQPspp)  zspp = min Qpe X + cja
s.t. QiquLc%Fat <d;, 1=1,...,q
Yz, X) >0, diag(X) <z.



Consider relaxation that imposes Y (z, X) > 0 together with the
diagonal RLT constraints diag(X) < x. Note that these condi-
tions together imply the original bound constraints 0 < x < e.
Result is:

(QCQPspp)  zspp = min Qpe X + cja
s.t. QiquLc%Fat <d;, 1=1,...,q
Yz, X) >0, diag(X) <z.

Goal is to relate QCQP g and QCQPgpp. The following theo-
rem shows that there is a simple relationship between the convex-
ifications used to construct these problems.
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Theorem 2. For 0 < z < e, let fo(z) = 1 (Q + Diag(a))z +
(c — a)lx, where & > 0 and Q + Diag(a) = 0. Assume that
Y(z,X) = 0, diag(X) < z. Then folz) < Qe X +cl .

Immediate corollary proves relationship between QCQP ,pp and

QCQPgpp first conjectured by Jeft Linderoth.

Corollary 2. Let z,gpg and zqpp denote the solution values in

the convex relazations QCQP g and QCQPqpp, respectively.
Then <oBB S ZSDP-



More general convexifications

Consider quadratic function f(z) = 2! Qz + ¢!z, and v; € 1",
g=1,...,k Assumeforx € F, [; < ?};Fx < u;. Follows that

(va:C - lj)(ijT:z: —u;j) <0, or (vax)Q — (I + uj)va:I: +lju; < 0.



More general convexifications
Consider quadratic function f(z) = 2 Qz + ¢" z, and v; € R,

g=1,...,k Assumeforx € F, [; < ?};FI < u;. Follows that

(vfa: - lj)(va:z: —u;j) <0, or (vax)Q — (I + uj)va:I: +lju; < 0.

For o € %ﬁ, define

k
Qla) = Q + Zozjvjva,
ZO‘J +u] Vj,
— Zajljuj,
1=1

and let fo(z) = 21 Q(a)x + cla)! = + p(a).



If Q(a) = 0, fa(-) is a convex underestimator for f(-) on F.
Zheng, Sun and Li (2009) refer to functions of the form f,(-) as
DC underestimators, and apply them to convexity the objective
in QCQP problems with only linear constraints (¢ = 0).
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If Q(a) = 0, fa(-) is a convex underestimator for f(-) on F.
Zheng, Sun and Li (2009) refer to functions of the form f,(-) as
DC underestimators, and apply them to convexity the objective
in QCQP problems with only linear constraints (¢ = 0).

Note that the BB underestimator on 0 < x < e corresponds to
vi=-ej, l;=0,u;=1,j=1,...,n Additional possiblities for
v include:

e cigenvectors corresponding to negative eigenvalues of ().

e transposed rows of the constraint matrix A.



Using underestimators of the form f,(-), obtain convex relaxation
(QCQPpe)  2pc = min & Qolap) + cp(an)’ = + plap)
st 2 Qilap)z + i) + play) < d;
1=1,...,q
x>0, Ax < b,

where each o € %]j is chosen so that @Q;(cy) = 0.



Using underestimators of the form f,(-), obtain convex relaxation

(QCQPpe)  2pc = min ' Qglap)z + colap)’ = + plap)
st 2l Qi) + ¢i(a) z + play) < d;,
1=1,...,q
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We will compare QCQPpc to a relaxation of QCQP that com-
bines the semidefiniteness condition Y (z, X') = 0 with the RLT
constraints on (x, X) that can be obtained from the original lin-
ear constraints x > 0, Ax < b. Refer to this as the “SDP+RLT”
relaxation.



Using underestimators of the form f,(-), obtain convex relaxation

(QCQPpe)  2pc = min ' Qglap)z + colap)’ = + plap)
st 2l Qi) + ¢i(a) z + play) < d;,
1=1,...,q
x>0, Ax <D,

where each o € %]i is chosen so that @Q;(cy) = 0.

We will compare QCQPpc to a relaxation of QCQP that com-
bines the semidefiniteness condition Y (z, X') = 0 with the RLT
constraints on (x, X) that can be obtained from the original lin-

ear constraints x > 0, Ax < b. Refer to this as the “SDP+RLT”
relaxation.

Theorem 3. Let zpc and zsppiprT denote the solution val-
ues in the convex relarations QUQPpc and QCQPsppRrLT,
respectively. Then zpc < 23DpLRLT-



Conclusion

Approach of approximating C has substantial advantages over

common methodology of approximating convex lower envelopes,
if solver can handle the constraint Y (xz, X) »= 0.



