Comparing Convex Relaxations for Quadratically Constrained Quadratic Programming

Kurt M. Anstreicher Dept. of Management Sciences University of Iowa

INFORMS National Meeting, Austin, November 2010

The QCQP problem

Consider a quadratically constrained quadratic program:

(QCQP)
$$z^* = \min f_0(x)$$

s.t. $f_i(x) \le d_i, \quad i = 1, \dots, q$
 $x \ge 0, \quad Ax \le b,$

where $f_i(x) = x^T Q_i x + c_i^T x$, i = 0, 1, ..., q, each Q_i is an $n \times n$ symmetric matrix, and A is an $m \times n$ matrix.

The QCQP problem

Consider a quadratically constrained quadratic program:

(QCQP)
$$z^* = \min f_0(x)$$

s.t. $f_i(x) \le d_i, \quad i = 1, \dots, q$
 $x \ge 0, \quad Ax \le b,$

where $f_i(x) = x^T Q_i x + c_i^T x$, i = 0, 1, ..., q, each Q_i is an $n \times n$ symmetric matrix, and A is an $m \times n$ matrix.

Let $\mathcal{F} = \{x \ge 0 : Ax \le b\}$; assume throughout \mathcal{F} bounded.

The QCQP problem

Consider a quadratically constrained quadratic program:

(QCQP)
$$z^* = \min f_0(x)$$

s.t. $f_i(x) \le d_i, \quad i = 1, \dots, q$
 $x \ge 0, \quad Ax \le b,$

where $f_i(x) = x^T Q_i x + c_i^T x$, i = 0, 1, ..., q, each Q_i is an $n \times n$ symmetric matrix, and A is an $m \times n$ matrix.

Let $\mathcal{F} = \{x \ge 0 : Ax \le b\}$; assume throughout \mathcal{F} bounded.

If $Q_i \succeq 0$ for each *i*, QCQP is a convex programming problem that can be solved in polynomial time, but in general the problem is NP-Hard. QCQP is a fundamental global optimization problem.

Two Convexifications of $\mathbf{Q}\mathbf{C}\mathbf{Q}\mathbf{P}$

A common approach to obtaining a lower bound on z^* is to somehow convexify the problem. We consider two different approaches.

Two Convexifications of QCQP

A common approach to obtaining a lower bound on z^* is to somehow convexify the problem. We consider two different approaches.

For the first, let $\hat{f}_i(\cdot)$ be the convex lower envelope of $f_i(\cdot)$ on \mathcal{F} , $\hat{f}_i(x) = \max\{v^T x : v^T \hat{x} \leq f(\hat{x}) \ \forall \hat{x} \in \mathcal{F}\}.$

Two Convexifications of QCQP

A common approach to obtaining a lower bound on z^* is to somehow convexify the problem. We consider two different approaches.

For the first, let $\hat{f}_i(\cdot)$ be the convex lower envelope of $f_i(\cdot)$ on \mathcal{F} , $\hat{f}_i(x) = \max\{v^T x : v^T \hat{x} \leq f(\hat{x}) \ \forall \hat{x} \in \mathcal{F}\}.$

Let \widehat{QCQP} be the problem where $\widehat{f}_i(\cdot)$ replaces $f_i(\cdot)$, $i = 0, \ldots, q$, and let \widehat{z} be the solution value in \widehat{QCQP} . Second approach to convexifying QCQP is based on linearizing the problem by adding additional variables. Let X denote a symmetric $n \times n$ matrix. Then QCQP can be written

(QCQP)
$$z^* = \min Q_0 \bullet X + c_0^T x$$

s.t. $Q_i \bullet X + c_i^T x \le d_i, \quad i = 1, \dots, q$
 $x \ge 0, \ Ax \le b, \ X = xx^T.$

Second approach to convexifying QCQP is based on linearizing the problem by adding additional variables. Let X denote a symmetric $n \times n$ matrix. Then QCQP can be written

(QCQP)
$$z^* = \min Q_0 \bullet X + c_0^T x$$

s.t. $Q_i \bullet X + c_i^T x \le d_i, \quad i = 1, \dots, q$
 $x \ge 0, \ Ax \le b, \ X = xx^T.$

A convexification of QCQP can then be given in terms of the set

$$\mathcal{C} = \operatorname{Co}\left\{ \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}^T : x \in \mathcal{F} \right\}$$

Second approach to convexifying QCQP is based on linearizing the problem by adding additional variables. Let X denote a symmetric $n \times n$ matrix. Then QCQP can be written

(QCQP)
$$z^* = \min Q_0 \bullet X + c_0^T x$$

s.t. $Q_i \bullet X + c_i^T x \le d_i, \quad i = 1, \dots, q$
 $x \ge 0, \ Ax \le b, \ X = xx^T.$

A convexification of QCQP can then be given in terms of the set

$$\mathcal{C} = \operatorname{Co}\left\{ \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}^T : x \in \mathcal{F} \right\}.$$

Let $\overline{\text{QCQP}}$ denote problem where $X = xx^T$ is replaced by

$$Y(x,X) := \begin{pmatrix} 1 & x^T \\ x & X \end{pmatrix} \in \mathcal{C}.$$

Have two convexifications:

$$(\widehat{\text{QCQP}}) \quad \hat{z} = \min \ \hat{f}_0(x)$$

s.t. $\hat{f}_i(x) \le d_i, \quad i = 1, \dots, q$
 $x \in \mathcal{F}.$

$$(\overline{\text{QCQP}}) \quad \bar{z} = \min \ Q_0 \bullet X + c_0^T x$$

s.t. $Q_i \bullet X + c_i^T x \le d_i, \quad i = 1, \dots, q$
 $Y(x, X) \in \mathcal{C}.$

Have two convexifications:

$$(\widehat{\text{QCQP}}) \quad \hat{z} = \min \ \hat{f}_0(x)$$

s.t. $\hat{f}_i(x) \le d_i, \quad i = 1, \dots, q$
 $x \ge 0, \quad Ax \le b.$

$$(\overline{\text{QCQP}}) \quad \bar{z} = \min \ Q_0 \bullet X + c_0^T x$$

s.t. $Q_i \bullet X + c_i^T x \leq d_i, \quad i = 1, \dots, q$
 $Y(x, X) \in \mathcal{C}.$

Claim: $\hat{z} \leq \bar{z}$.

To prove the claim, must relate the different convexifications used to construct \widehat{QCQP} and \overline{QCQP} .

Theorem 1. For $x \in \mathcal{F}$, let $f(x) = x^T Q x + c^T x$, and let $\hat{f}(\cdot)$ be the convex lower envelope of $f(\cdot)$ on \mathcal{F} . Then $\hat{f}(x) = \min\{Q \bullet X + c^T x : Y(x, X) \in \mathcal{C}\}.$

Theorem 1. For $x \in \mathcal{F}$, let $f(x) = x^T Q x + c^T x$, and let $\hat{f}(\cdot)$ be the convex lower envelope of $f(\cdot)$ on \mathcal{F} . Then $\hat{f}(x) = \min\{Q \bullet X + c^T x : Y(x, X) \in \mathcal{C}\}.$

Claimed relationship between $\overline{\text{QCQP}}$ and $\widehat{\text{QCQP}}$ is an immediate consequence of Theorem 1. In particular, using Theorem 1, $\widehat{\text{QCQP}}$ could be rewritten in the form

$$(\widehat{\text{QCQP}}) \quad \hat{z} = \min \ Q_0 X_0 + c^T x$$

s.t. $Q_i \bullet X_i + c_i^T x \le d_i, \quad i = 1, \dots, q$
 $Y(x, X_i) \in \mathcal{C}, \ i = 0, 1, \dots, q,$

so that $\overline{\text{QCQP}}$ corresponds to $\widehat{\text{QCQP}}$ with the added constraints $X_0 = X_1 = \ldots = X_q$.

Theorem 1. For $x \in \mathcal{F}$, let $f(x) = x^T Q x + c^T x$, and let $\hat{f}(\cdot)$ be the convex lower envelope of $f(\cdot)$ on \mathcal{F} . Then $\hat{f}(x) = \min\{Q \bullet X + c^T x : Y(x, X) \in \mathcal{C}\}.$

Claimed relationship between $\overline{\text{QCQP}}$ and $\widehat{\text{QCQP}}$ is an immediate consequence of Theorem 1. In particular, using Theorem 1, $\widehat{\text{QCQP}}$ could be rewritten in the form

$$(\widehat{\text{QCQP}}) \quad \hat{z} = \min \ Q_0 X_0 + c^T x$$

s.t. $Q_i \bullet X_i + c_i^T x \leq d_i, \quad i = 1, \dots, q$
 $Y(x, X_i) \in \mathcal{C}, \ i = 0, 1, \dots, q,$

so that $\overline{\text{QCQP}}$ corresponds to $\widehat{\text{QCQP}}$ with the added constraints $X_0 = X_1 = \ldots = X_q$.

Corollary 1. Let \hat{z} and \overline{z} denote solution values in convex relaxations QCQP and QCQP, respectively. Then $\hat{z} \leq \overline{z}$.

Distinction between $\overline{\text{QCQP}}$ and $\widehat{\text{QCQP}}$ is already sharp for m = n = q = 1. Consider

$$\min x_1^2 \\ \text{s.t.} \ x_1^2 \ge \frac{1}{2} \\ 0 \le x_1 \le 1.$$

Distinction between $\overline{\text{QCQP}}$ and $\widehat{\text{QCQP}}$ is already sharp for m = n = q = 1. Consider

min
$$x_1^2$$

s.t. $x_1^2 \ge \frac{1}{2}$
 $0 \le x_1 \le 1$.

Written in form of QCQP, $x_1^2 \ge \frac{1}{2}$ is $-x_1^2 \le -\frac{1}{2}$, and convex lower envelope on [0, 1] is $-x_1$. Relaxation QCQP is then

$$\min x_1^2$$
s.t.
$$-x_1 \le -\frac{1}{2}$$

$$0 \le x_1 \le 1$$

Distinction between $\overline{\text{QCQP}}$ and $\widehat{\text{QCQP}}$ is already sharp for m = n = q = 1. Consider

$$\begin{array}{l} \min \ x_1^2 \\ \text{s.t.} \ x_1^2 \ge \frac{1}{2} \\ 0 \le x_1 \le 1 \end{array}$$

Written in form of QCQP, $x_1^2 \ge \frac{1}{2}$ is $-x_1^2 \le -\frac{1}{2}$, and convex lower envelope on [0, 1] is $-x_1$. Relaxation QCQP is then

$$\min x_1^2$$
s.t.
$$-x_1 \le -\frac{1}{2}$$

$$0 \le x_1 \le 1$$

Solution value is $\hat{z} = \frac{1}{4}$. The solution value for $\overline{\text{QCQP}}$ is $\overline{z} = z^* = \frac{1}{2}$. For $x_1 = \frac{1}{2}$, $Y(x_1, x_{11}) \in \mathcal{C}$ for $x_{11} \in [\frac{1}{4}, \frac{1}{2}]$. The solution of $\widehat{\text{QCQP}}$ corresponds to using $x_1 = \frac{1}{2}$ along with $x_{11} = \frac{1}{4}$ for the objective, and $x_{11} = \frac{1}{2}$ for the single nonlinear constraint.

Figure 1: Set \mathcal{C} for example

Two computable relaxations

For a quadratic function $f(x) = x^T Q x + c^T x$ defined on $\mathcal{F} = \{x : 0 \le x \le e\}$, the well-known αBB underestimator is

$$f_{\alpha}(x) = x^T (Q + \operatorname{Diag}(\alpha)) x + (c - \alpha)^T x,$$

where $\alpha \in \Re^n_+$ has $Q + \text{Diag}(\alpha) \succeq 0$. Since $f_{\alpha}(\cdot)$ is convex, $f_{\alpha}(x) \leq \hat{f}(x), 0 \leq x \leq e$.

Two computable relaxations

For a quadratic function $f(x) = x^T Q x + c^T x$ defined on $\mathcal{F} = \{x : 0 \le x \le e\}$, the well-known αBB underestimator is

$$f_{\alpha}(x) = x^T (Q + \operatorname{Diag}(\alpha))x + (c - \alpha)^T x,$$

where $\alpha \in \Re^n_+$ has $Q + \text{Diag}(\alpha) \succeq 0$. Since $f_{\alpha}(\cdot)$ is convex, $f_{\alpha}(x) \leq \hat{f}(x), 0 \leq x \leq e$.

A further relaxation of \widehat{QCQP} is then given by:

$$(\text{QCQP}_{\alpha\text{BB}}) \quad z_{\alpha\text{BB}} = \min \ x^T (Q_0 + \text{Diag}(\alpha_0)) x + (c_0 - \alpha_0)^T x$$

s.t.
$$x^T (Q_i + \text{Diag}(\alpha_i)) x + (c_i - \alpha_i)^T x \le d_i,$$
$$i = 1, \dots, q$$
$$0 \le x \le e,$$

where each α_i is chosen so that $Q_i + \text{Diag}(\alpha_i) \succeq 0$.

1. The constraints from the Reformulation-Linearization Technique (RLT);

$$\{0, x_i + x_j - 1\} \le x_{ij} \le \{x_i, x_j\}.$$

1. The constraints from the Reformulation-Linearization Technique (RLT);

$$\{0, x_i + x_j - 1\} \le x_{ij} \le \{x_i, x_j\}.$$

2. The semidefinite programming (SDP) constraint $Y(x, X) \succeq 0$;

1. The constraints from the Reformulation-Linearization Technique (RLT);

$$\{0, x_i + x_j - 1\} \le x_{ij} \le \{x_i, x_j\}.$$

- 2. The semidefinite programming (SDP) constraint $Y(x, X) \succeq 0$;
- 3. Constraints on the off-diagonal components of Y(x, X) coming from the Boolean Quadric Polytope (BQP), for example, the triangle inequalities for $i \neq j \neq k$,

$$x_{i} + x_{j} + x_{k} \leq x_{ij} + x_{ik} + x_{jk} + 1,$$

$$x_{ij} + x_{ik} \leq x_{i} + x_{jk},$$

$$x_{ij} + x_{jk} \leq x_{j} + x_{ik},$$

$$x_{ik} + x_{jk} \leq x_{k} + x_{ij}.$$

Consider relaxation that imposes $Y(x, X) \succeq 0$ together with the diagonal RLT constraints $\operatorname{diag}(X) \leq x$. Note that these conditions together imply the original bound constraints $0 \leq x \leq e$. Result is:

$$(\text{QCQP}_{\text{SDP}}) \quad z_{\text{SDP}} = \min \ Q_0 \bullet X + c_0^T x$$

s.t. $Q_i \bullet X + c_i^T x \leq d_i, \quad i = 1, \dots, q$
 $Y(x, X) \succeq 0, \quad \text{diag}(X) \leq x.$

Consider relaxation that imposes $Y(x, X) \succeq 0$ together with the diagonal RLT constraints $\operatorname{diag}(X) \leq x$. Note that these conditions together imply the original bound constraints $0 \leq x \leq e$. Result is:

$$(\text{QCQP}_{\text{SDP}}) \quad z_{\text{SDP}} = \min \ Q_0 \bullet X + c_0^T x$$

s.t. $Q_i \bullet X + c_i^T x \leq d_i, \quad i = 1, \dots, q$
 $Y(x, X) \succeq 0, \quad \text{diag}(X) \leq x.$

Goal is to relate $QCQP_{\alpha BB}$ and $QCQP_{SDP}$. The following theorem shows that there is a simple relationship between the convexifications used to construct these problems. **Theorem 2.** For $0 \le x \le e$, let $f_{\alpha}(x) = x^T(Q + \text{Diag}(\alpha))x + (c - \alpha)^T x$, where $\alpha \ge 0$ and $Q + \text{Diag}(\alpha) \succeq 0$. Assume that $Y(x, X) \succeq 0$, $\text{diag}(X) \le x$. Then $f_{\alpha}(x) \le Q \bullet X + c^T x$.

Theorem 2. For $0 \le x \le e$, let $f_{\alpha}(x) = x^T(Q + \text{Diag}(\alpha))x + (c - \alpha)^T x$, where $\alpha \ge 0$ and $Q + \text{Diag}(\alpha) \succeq 0$. Assume that $Y(x, X) \succeq 0$, $\text{diag}(X) \le x$. Then $f_{\alpha}(x) \le Q \bullet X + c^T x$.

Immediate corollary proves relationship between $QCQP_{\alpha BB}$ and $QCQP_{SDP}$ first conjectured by Jeff Linderoth.

Theorem 2. For $0 \le x \le e$, let $f_{\alpha}(x) = x^T(Q + \text{Diag}(\alpha))x + (c - \alpha)^T x$, where $\alpha \ge 0$ and $Q + \text{Diag}(\alpha) \succeq 0$. Assume that $Y(x, X) \succeq 0$, $\text{diag}(X) \le x$. Then $f_{\alpha}(x) \le Q \bullet X + c^T x$.

Immediate corollary proves relationship between $QCQP_{\alpha BB}$ and $QCQP_{SDP}$ first conjectured by Jeff Linderoth.

Corollary 2. Let $z_{\alpha BB}$ and z_{SDP} denote the solution values in the convex relaxations QCQP_{$\alpha BB}$ and QCQP_{SDP}, respectively. Then $z_{\alpha BB} \leq z_{SDP}$.</sub>

More general convexifications

Consider quadratic function $f(x) = x^T Q x + c^T x$, and $v_j \in \Re^n$, $j = 1, \ldots, k$. Assume for $x \in \mathcal{F}$, $l_j \leq v_j^T x \leq u_j$. Follows that $(v_j^T x - l_j)(v_j^T x - u_j) \leq 0$, or $(v_j^T x)^2 - (l_j + u_j)v_j^T x + l_j u_j \leq 0$.

More general convexifications

Consider quadratic function $f(x) = x^T Q x + c^T x$, and $v_j \in \Re^n$, $j = 1, \ldots, k$. Assume for $x \in \mathcal{F}$, $l_j \leq v_j^T x \leq u_j$. Follows that $(v_j^T x - l_j)(v_j^T x - u_j) \leq 0$, or $(v_j^T x)^2 - (l_j + u_j)v_j^T x + l_j u_j \leq 0$. For $\alpha \in \Re^k_+$, define

$$Q(\alpha) = Q + \sum_{j=1}^{k} \alpha_j v_j v_j^T,$$

$$c(\alpha) = c - \sum_{j=1}^{k} \alpha_j (l_j + u_j) v_j,$$

$$p(\alpha) = \sum_{j=1}^{k} \alpha_j l_j u_j,$$

and let $f_{\alpha}(x) = x^T Q(\alpha) x + c(\alpha)^T x + p(\alpha)$.

Note that the α BB underestimator on $0 \le x \le e$ corresponds to $v_j = e_j, l_j = 0, u_j = 1, j = 1, \dots, n$. Additional possiblities for v_j include:

Note that the α BB underestimator on $0 \le x \le e$ corresponds to $v_j = e_j, l_j = 0, u_j = 1, j = 1, \dots, n$. Additional possiblities for v_j include:

• eigenvectors corresponding to negative eigenvalues of Q,

Note that the α BB underestimator on $0 \le x \le e$ corresponds to $v_j = e_j, l_j = 0, u_j = 1, j = 1, \dots, n$. Additional possiblities for v_j include:

- eigenvectors corresponding to negative eigenvalues of Q,
- transposed rows of the constraint matrix A.

Using underestimators of the form $f_{\alpha}(\cdot)$, obtain convex relaxation

$$(\text{QCQP}_{\text{DC}}) \quad z_{\text{DC}} = \min \ x^T Q_0(\alpha_0) x + c_0(\alpha_0)^T x + p(\alpha_0)$$

s.t.
$$x^T Q_i(\alpha_i) x + c_i(\alpha_i)^T x + p(\alpha_i) \le d_i,$$
$$i = 1, \dots, q$$
$$x \ge 0, \ Ax \le b,$$

where each $\alpha_i \in \Re^k_+$ is chosen so that $Q_i(\alpha_i) \succeq 0$.

Using underestimators of the form $f_{\alpha}(\cdot)$, obtain convex relaxation

$$(\text{QCQP}_{\text{DC}}) \quad z_{\text{DC}} = \min \ x^T Q_0(\alpha_0) x + c_0(\alpha_0)^T x + p(\alpha_0)$$

s.t.
$$x^T Q_i(\alpha_i) x + c_i(\alpha_i)^T x + p(\alpha_i) \le d_i,$$
$$i = 1, \dots, q$$
$$x \ge 0, \ Ax \le b,$$

where each $\alpha_i \in \Re^k_+$ is chosen so that $Q_i(\alpha_i) \succeq 0$.

We will compare $QCQP_{DC}$ to a relaxation of QCQP that combines the semidefiniteness condition $Y(x, X) \succeq 0$ with the RLT constraints on (x, X) that can be obtained from the original linear constraints $x \ge 0$, $Ax \le b$. Refer to this as the "SDP+RLT" relaxation. Using underestimators of the form $f_{\alpha}(\cdot)$, obtain convex relaxation

$$(\text{QCQP}_{\text{DC}}) \quad z_{\text{DC}} = \min \ x^T Q_0(\alpha_0) x + c_0(\alpha_0)^T x + p(\alpha_0)$$

s.t.
$$x^T Q_i(\alpha_i) x + c_i(\alpha_i)^T x + p(\alpha_i) \le d_i,$$
$$i = 1, \dots, q$$
$$x \ge 0, \ Ax \le b,$$

where each $\alpha_i \in \Re^k_+$ is chosen so that $Q_i(\alpha_i) \succeq 0$.

We will compare $QCQP_{DC}$ to a relaxation of QCQP that combines the semidefiniteness condition $Y(x, X) \succeq 0$ with the RLT constraints on (x, X) that can be obtained from the original linear constraints $x \ge 0$, $Ax \le b$. Refer to this as the "SDP+RLT" relaxation.

Theorem 3. Let z_{DC} and $z_{\text{SDP+RLT}}$ denote the solution values in the convex relaxations QCQP_{DC} and $\text{QCQP}_{\text{SDP+RLT}}$, respectively. Then $z_{\text{DC}} \leq z_{\text{SDP+RLT}}$.

Conclusion

Approach of approximating \mathcal{C} has substantial advantages over common methodology of approximating convex lower envelopes, *if* solver can handle the constraint $Y(x, X) \succeq 0$.