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Abstract It is well known that the convex hull of {(x,y,xy)}, where (x,y) is con-

strained to lie in a box, is given by the Reformulation-Linearization Technique (RLT)

constraints. Belotti et al. (2010) and Miller et al. (2011) showed that if there are ad-

ditional upper and/or lower bounds on the product z = xy, then the convex hull can

be represented by adding an infinite family of inequalities, requiring a separation al-

gorithm to implement. Nguyen et al. (2018) derived convex hulls for {(x,y,z)} with

bounds on z = xyb, b ≥ 1. We focus on the case where b = 1 and show that the convex

hull with either an upper bound or lower bound on the product is given by RLT con-

straints, the bound on z and a single Second-Order Cone (SOC) constraint. With both

upper and lower bounds on the product, the convex hull can be represented using no

more than three SOC constraints, each applicable on a subset of (x,y) values. In ad-

dition to the convex hull characterizations, volumes of the convex hulls with either an

upper or lower bound on z are calculated and compared to the relaxation that imposes

only the RLT constraints. As an application of these volume results, we show how

spatial branching can be applied to the product variable so as to minimize the sum of

the volumes for the two resulting subproblems.
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1 Introduction

Representing the product of two variables is a fundamental problem in global opti-

mization. This issue arises naturally in the presence of bilinear terms in the objec-

tive and/or constraints, and also when more complex functions are decomposed into

factorable form by global optimization algorithms such as BARON [15]. It is well

known [1] that the convex hull of (x,y,xy) where (x,y) lie in a box is given by the

four Reformulation-Linearization Technique (RLT) constraints [17,18], also often re-

ferred to as the McCormick inequalities [12]. Linderoth [11] derived the convex hulls

of bilinear functions over triangles and showed that they have Second-Order Cone

(SOC) [7] representations. Dey et al. [8] show that the convex hull of (x,y,xy) over

the box intersected with a bilinear equation is SOC representable. The convex hull

for the complete 5-variable quadratic system (x,y,x2,xy,y2) that arises from 2 orig-

inal variables in a box was considered in [4] and [9]. Explicit functional forms for

the convex hull that apply over a dissection of the box are given in [9], while [4]

shows that the convex hull can be represented using the RLT constraints and a PSD

condition.

The focus of this paper is to consider the convex hull of (x,y,xy) when (x,y) lie

in a box and there are explicit upper and/or lower bounds on the product xy. More

precisely, we wish to characterize the convex hull of

F ′ := {(x,y,z) : z = xy, lx ≤ x ≤ ux, ly ≤ y ≤ uy, lz ≤ z ≤ uz}
where 0 ≤ (lx, ly, lz)< (ux,uy,uz). We assume F ′ �= /0, i.e., that lxly ≤ lz < uz ≤ uxuy.

When lxly < lz, we say that the lower bound lz on z is non-trivial and similarly for the

upper bound when uz < uxuy. By a simple rescaling, we can transform the feasible

region to have ux = uy = 1, and we will make this assumption throughout. Note also

that if z = xy and ly > 0 then x ≤ uz/ly, so we could assume that ux ≤ uz/ly. Then

ux = 1 means we can assume ly ≤ uz, and similarly lx ≤ uz. In addition x ≥ lz/uy, so

uy = 1 implies that we may assume that lx ≥ lz and similarly ly ≥ lz. Combining these

facts, we could assume that

lz ≤ lx ≤ uz, lz ≤ ly ≤ uz. (1)

Said differently, if lx and ly do not satisfy (1), we can adjust them so that they do.

However, we do not explicitly assume that (1) holds until Section 4.

Nontrivial bounds on product variables occur naturally in a variety of applica-

tions. For example, in a facility layout problem the variables x and y could represent

the dimensions of a rectangular floor area allocated to an activity. In addition to upper

and lower bounds on x and y, it is natural to have upper and lower bounds on the area

allocated to the activity, which is exactly the product xy. Bounds on product vari-

ables that occur in a problem’s objective may also be tightened when range-reduction

techniques are applied, as in BARON [15].

The problem of characterizing conv(F ′) has been considered in several previous

works. Bellotti et.al. [6] and Miller et.al. [13] show that conv(F ′) can be repre-

sented by the RLT inequalities, bounds on z and lifted tangent inequalities, which we

describe in Section 2. Since the lifted tangent inequalities belong to an infinite family,
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they require a separation algorithm to implement. The convex hull for generalizations

of F ′ where z ≤ xayb, a ≥ 1, b ≥ 1, as well as z ≥ xyb and z = xyb with b ≥ 1, are

considered in [14]. There are two primary differences between this paper and [14].

First, because [14] considers more general problems, both the analysis required and

the representations obtained are substantially more complex than our results here. In

particular, we will show that with z = xy the convex hull of F ′ can always be rep-

resented using linear inequalities and SOC constraints, although in some cases, the

derivations of the SOC forms for these constraints is nontrivial. A second difference

is that [14] assumes lx > 0, ly > 0. In [14] it is stated that this assumption is with-

out loss of generality, since by a limiting argument positive lower bounds could be

reduced to zero. This is true, but [14] goes on to assume that lx = ly = 1, making rep-

resentations for the important case of lx = 0 and/or ly = 0 difficult to extract from the

results. Another recent, related paper [16] shows that conv(F ′) is SOC representable

using a disjunctive representation in a lifted space; see section 4 therein. In contrast,

we will show that conv(F ′) is SOC representable directly in the variables (x,y,z). All

of these previous works, like this paper, assume that (lx, ly)≥ 0; in particular the case

of a variable with a negative lower bound and a positive upper bound is excluded. The

case of mixed signs for one or both of the variables (x,y) presents obvious complica-

tions in the analysis of the product xy. In particular some of the SOC constraints that

arise in our representations of conv(F ′) contain implicit sign restrictions on the vari-

ables. One simple solution to dealing with a case where variables have mixed signs is

to partition the domain of (x,y) into orthants on which the signs of the variables are

constant, and then characterize conv(F ′) on each orthant.

In Section 3, we consider the case where lx = ly = 0 and there are non-trivial

upper and/or lower bounds on the product variable z. Our methodology for obtaining

explicit representations for conv(F ′) is based on the lifted tangent inequalities of [6,

13]. We do not use the inequalities per se, but rather show how the process by which

they are constructed can be re-interpreted to generate nonlinear inequalities. We show

that in all cases, these inequalities can be put into the form of SOC constraints, so

that conv(F ′) is SOC-representable [7]. In the presence of both non-trivial upper

and lower bounds on z, the representation requires a dissection of the domain of (x,y)
values into three regions, each of which uses a different SOC constraint to obtain the

convex hull. One of the three SOC constraints is globally valid, and the use of this one

constraint together with the RLT constraints and bounds on z empirically gives a close

approximation of conv(F ′). Finally, we compute the volumes of conv(F ′) as given

in the case where there is either a non-trivial upper or non-trivial lower bound on

z using an SOC constraint, the RLT constraints and bound on z, and compare these

volumes to the volumes of the regions where the SOC constraint is omitted. This

comparison is similar to the volume computations in [3], where the effect of adding

a PSD condition to the RLT constraints was considered. An interesting application

of these computations is to consider the reduction in volume associated with spatial

branching [5] based on the product variable z.

In Section 4 we generalize the results of Section 3 to consider nonzero lower

bounds on (x,y), specifically bounds lx ≥ 0, ly ≥ 0. We again show that in all cases,

conv(F ′) is SOC-representable. As in the case of lx = ly = 0, when there is a non-

trivial upper or a non-trivial lower bound on the product, but not both, the repre-
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Fig. 1: Convex hull with no bounds on z

sentation of conv(F ′) requires only a single SOC constraint in addition to the RLT

constraints and bound on z. When there are both non-trivial lower and upper bounds

on z there are several cases to consider, again requiring up to three SOC constraints,

each applicable on a subset of the domain of (x,y). We close the paper in Section 5

with a summary of the results and some promising directions for future research.

2 Lifted Tangent Inequalities

The set F = {(x,y,z) : z = xy, lx ≤ x ≤ ux, ly ≤ y ≤ uy}, i.e., F ′ with only trivial

bounds on z, is not convex, but it is well known that conv(F ) is the linear envelope of

four extreme points [1]. This linear envelope can be given by the four RLT constraints

[12,17,18]:

z ≥ uyx+uxy−uxuy, (2a)

z ≥ lyx+ lxy− lxly, (2b)

z ≤ uyx+ lxy− lxuy, (2c)

z ≤ lyx+uxy−uxly. (2d)

Figure 1 shows the product xy as a colored surface and the boundary edges for the

linear envelope as red lines for the case where lx = ly = 0 and ux = uy = 1.

The focus in this paper is to represent the convex hull of the set F ′, corresponding

to F with nontrivial upper and lower bounds on the product variable z. Recall that

we assume ux = uy = 1 throughout. It is shown in [6,13] that the convex hull of F ′
is given by the RLT constraints, bounds on z, and lifted tangent inequalities. Our

technique for deriving convex hull representations in Sections 3 – 4 is based on the

construction of these lifted tangent inequalities, which we now describe. Assume
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that l = (lx, ly, lz) and u = (1,1,uz). The reader may wish to refer to Figure 5, which

illustrates conv(F ′) in the case of lx = ly = 0, 0 < lz < uz < 1. The construction of

a lifted tangent inequality based on a point (x∗,y∗, lz)∈ F ′ proceeds as follows. The

inequality tangent to the curve xy = lz at (x∗,y∗) has the form

y∗(x− x∗)+ x∗(y− y∗)≥ 0.

This inequality is lifted to an inequality in the variables (x,y,z) of the form

y∗(x− x∗)+ x∗(y− y∗)+a(z− lz)≥ 0, (3)

with a< 0. The value of a is chosen so that there is a point (x̄, ȳ,uz)∈ F ′ such that the

inequality (3) is tight at (x̄, ȳ,uz), and (3) is valid for F ′. There are two possibilities

for such a point:

– x̄ = ρx∗, ȳ = ρy∗, where ρ =
√

uz/lz. In this case, the value of a is independent

of (x∗,y∗); as shown in [6,13] there is an expression for a that depends only on lz
and uz.

– (x̄, ȳ) corresponds to one of the endpoints of the curve xy= uz for the given bounds

on x and y. In the case of uz = 1, this point is x̄ = ȳ = 1.

The construction of a lifted tangent inequality can alternatively start with a point

(x̄, ȳ,uz) ∈ F ′. In this case, the roles of (x∗,y∗) and (x̄, ȳ) are reversed, and either

(x∗,y∗) = (1/ρ)(x̄, ȳ) or (x∗,y∗) is an endpoint of the curve xy = lz for the bounds

on x and y. If lxly = lz then this point is (lx, ly, lz); for example if lx = ly = lz = 0, the

point is (0,0,0).
In all cases, the result of the above process is an inequality that is valid for F ′, and

which is tight for a line segment joining two points (x∗,y∗, lz)∈ F ′ and (x̄, ȳ,uz)∈ F ′.
Our approach does not use the lifted tangent inequalities themselves but is rather

based on the process for constructing them. In particular, starting with a point (x,y)
with x ∈ [lx,1], y ∈ [ly,1], lz < xy < uz, we determine the two points (x∗,y∗, lz)∈ F ′
and (x̄, ȳ,uz)∈ F ′ so that the lifted tangent inequality that is tight at (x,y,z) is tight for

the line segment joining (x∗,y∗, lz) and (x̄, ȳ,uz). Suppose that 0 ≤ α(x,y)≤ 1 is such

that (x,y) = α(x,y)(x∗,y∗)+ (1−α(x,y))(x̄, ȳ). Then the constraint z ≤ α(x,y)lz +
(1−α(x,y))uz is valid and tight on the line segment between (x∗,y∗, lz) and (x̄, ȳ,uz).
If α(x,y) can be explicitly expressed as a function of (x,y) then the result is a single

nonlinear constraint that is equivalent to a family of lifted tangent inequalities. Our

goal will be to obtain such a constraint and show that it can always be expressed

in the form of an SOC constraint; the original lifted tangent inequalities can then

be viewed as supporting hyperplanes for this second-order cone. An SOC constraint

obtained in this manner is certainly valid over the {(x,y)} domain on which it is

derived, since it is equivalent to the lifted tangent inequalities on that domain. In

some cases, we obtain SOC constraints that are actually globally valid, that is, valid

for all (x,y,z) ∈ conv(F ′).

3 Convex hull representation with lx = ly = 0

In this section we obtain representations for conv(F ′) when lx = ly = 0 and ux =
uy = 1. We begin by considering the case where lz = 0, uz < 1, and next consider the
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case where lz > 0, uz = 1. In both of these cases, we show that a combination of the

RLT constraints, the bound on z, and a single SOC constraint gives the convex hull

of F ′. In the case where lz > 0 and uz < 1, we show that the convex hull of F ′ is

representable using three SOC constraints, each applicable on a subset of the domain

in (x,y). One of these SOC constraints is globally valid, and the combination of that

single SOC constraint, the RLT constraints and the bounds on z empirically gives a

close approximation of conv(F ′).

3.1 Non-trivial upper bound on xy with lx = ly = 0

We first consider the case where x∈ [0,1], y∈ [0,1] and we impose a non-trivial upper

bound on the product z ≤ uz.

Proposition 1 Let l = (0,0,0), u = (1,1,uz) where 0 < uz < 1. Then conv(F ′) is
given by the RLT constraints (2), the bound z ≤ uz and the SOC constraint z2 ≤ uzxy.

Proof From [6,13] the convex hull of F ′ is given by the RLT constraints, bounds

on z and the lifted tangent inequalities. In this case, each lifted tangent inequality is

obtained by taking a point (x̄, ȳ) = (t,uz/t) with uz ≤ t ≤ 1, forming the tangent equa-

tion to xy = uz at (t,uz/t), and lifting this tangent equation to form a valid inequality

of the form uz

t
x+ ty−2z ≥ 0. (4)

The set of points in F ′ that satisfy (4) with equality then consists of the line seg-

ment joining the points (t,uz/t,uz) and (0,0,0). The constraint z2 ≤ uzxy holds with

equality for all such points, and therefore implies all of the lifted tangent inequalities.

Moreover, z2 ≤ uzxy clearly holds for all (x,y,z) ∈ conv(F ′), since if z = xy ≤ uz
then z2 = (xy)2 ≤ uzxy. �	

In Figure 2, we illustrate conv(F ′) for the case of l = (0,0,0), u= (1,1,0.4). The

green surface illustrates the boundary of the SOC constraint, and the red solid lines

indicate edges on the boundary of conv(F ′) corresponding to the RLT constraints

and the upper bound z ≤ uz. The dashed red lines indicate edges of the polyhedron

corresponding to the RLT constraints and upper bound on z, highlighting the portion

cut away by the SOC constraint. Note that none of the RLT constraints are redundant,

and although the SOC constraint is globally valid, this constraint does not give a tight

upper bound on z for all feasible (x,y), unlike the case considered in Section 3.2. In

[13], it is noted that if l = (0,0, lz) and u = (+∞,+∞,uz) then conv(F ′) is given by

the bounds on z and the SOC constraint (z+
√

lzuz)
2 ≤ (

√
lz +

√
uz)

2xy ; when lz = 0

this is exactly the constraint z2 ≤ uzxy.

3.2 Non-trivial lower bound on xy with lx = ly = 0

We next consider the case where x ∈ [0,1], y ∈ [0,1] and we impose only a lower

bound on the product z = xy ≥ lz. To obtain an SOC representation for conv(F ′) we
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Fig. 2: Convex hull with upper bound on z

need to characterize the lifted tangent inequalities, as in the proof of Proposition 1.

This is more complex than for the case of an upper bound z ≤ uz because the lifted

tangent inequalities are now tight on line segments of the form α(x∗,y∗, lz)+ (1−
α)(1,1,1), where x∗y∗ = lz.

Proposition 2 Let l =(0,0, lz), u=(1,1,1) where 0< lz < 1. Then conv(F ′) is given
by the RLT constraint (2a), the bound z≥ lz and the SOC constraint

√
(x̂, ŷ)M(x̂, ŷ)T ≤

x+ y−2z where x̂ := 1− x, ŷ := 1− y, and

M =

(
1 2lz −1

2lz −1 1

)
� 0.

Proof Given a point (x,y) with x > lz, y > lz and xy > lz, a lifted tangent inequality

that is tight at (x,y,z) must have x = αx∗+(1−α), y = αy∗+(1−α). Writing x∗
and y∗ in terms of x, y and α and using x∗y∗ = lz results in a quadratic equation

for α . Substituting the appropriate root of this quadratic equation into the constraint

z ≤ αlz +(1−α) then obtains the equivalent inequality

z ≤ (x+ y)−
√
(x− y)2 +4lz(1− x)(1− y)

2
.

It is straightforward to verify that(
1− x
1− y

)T (
1 2lz −1

2lz −1 1

)(
1− x
1− y

)
= (x− y)2 +4lz(1− x)(1− y).

The constraint
√
(x̂, ŷ)M(x̂, ŷ)T ≤ x + y − 2z then implies all of the lifted tangent

inequalities, and 0 ≤ lz ≤ 1 implies that −1 ≤ 1−2lz ≤ 1, so M � 0. Therefore, the

convex hull of F ′ is given by the RLT constraints, the bound z ≥ lz and this one SOC

constraint. However, the RLT constraints (2b)-(2d) are easily shown to be redundant,

even if lx and ly are increased to lz in their definitions. �	
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Fig. 3: Convex hull with lower bound on z

In Figure 3, we illustrate conv(F ′) for the case of l = (0,0,0.2), u = (1,1,1). In

the figure the dashed lines indicate edges corresponding to the RLT constraints (2c)

– (2d), with lx and ly increased to lz = 0.2 in the formulas for these constraints, as in

(1). Note that in this case, the SOC constraint gives a tight upper bound on z for all

feasible (x,y), unlike the case illustrated in Figure 2.

3.3 Non-trivial lower and upper bounds on xy with lx = ly = 0

We now consider the case where both non-trivial lower and upper bounds are imposed

on the product z = xy, so 0 < lz < uz < 1. The situation becomes more complex than

with only an upper or lower bound because now there are 3 classes of lifted tangent

inequalities. In each of the cases below, (x∗,y∗, lz)∈ F ′.

1. For the “center” domain y ≥ uzx and x ≥ uzy, each lifted tangent inequality corre-

sponds to a line segment connecting (x∗,y∗, lz) and (x̄, ȳ,uz)∈ F ′, where x̄ȳ = uz,

(x̄, ȳ) = ρ(x∗,y∗) and ρ =
√

uz/lz.

2. For the “side” domain y ≤ uzx, each lifted tangent inequality corresponds to a line

segment connecting (x∗,y∗, lz) and (1,uz,uz).

3. For the “side” domain x ≤ uzy, each lifted tangent inequality corresponds to a line

segment connecting (x∗,y∗, lz) and (uz,1,uz).

Figure 4 depicts these three domains in the xy-space for the case where lz = 0.2,

uz = 0.7.

In the lemma below, we show that in this case, conv(F ′) can be represented

using a single RLT constraint, the bounds on z, and 3 different SOC constraints, each
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Fig. 4: Domains for SOC constraints with lower and upper bounds on z

applicable on one of the domains described above. For convenience in stating the

result, we define matrices

M1: =

(
uz

2 2lz −uz
2lz −uz 1

)
, M2: =

(
1 2lz −uz

2lz −uz uz
2

)
. (5)

Proposition 3 Let l = (0,0, lz), u = (1,1,uz) where 0 < lz < uz < 1. Then conv(F ′)
is given by the RLT constraint (2a), the bounds lz ≤ z ≤ uz and three SOC constraints,
each applicable in a different region:

1. The constraint (z+
√

lzuz)
2 ≤ (

√
lz +

√
uz)

2xy, applicable if y ≥ uzx and x ≥ uzy.

2. The constraint
√
(x̂, ŷ)M1(x̂, ŷ)T ≤ uzx+y−2z, where x̂ := 1−x, ŷ := uz −y and

M1 � 0 is given in (5), applicable if y ≤ uzx.

3. The constraint
√
(x̂, ŷ)M2(x̂, ŷ)T ≤ x+uzy−2z, where x̂ := uz −x, ŷ := 1−y and

M2 � 0 is given in (5), applicable if x ≤ uzy.

Proof Assume first that y ≥ uzx and x ≥ uzy. We know that (x,y) is on the line seg-

ment connecting (x∗,y∗) and (x̄, ȳ), from which we conclude that x∗ = x
√

lz/(xy) and

x̄ = x
√

uz/(xy). Then x = αx∗+(1−α)x̄ implies that

x = αx
√

lz/(xy)+(1−α)x
√

uz/(xy),

from which we obtain
√

xy = α
√

lz +(1−α)
√

uz, or

α =

√
uz −√

xy√
uz −

√
lz
.
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Fig. 5: Convex hull with lower and upper bounds on z

Substituting this value of α into the inequality z ≤ αlz +(1−α)uz and simplifying,

we obtain the inequality (z+
√

lzuz)
2 ≤ (

√
lz +

√
uz)

2xy. Therefore, this SOC con-

straint implies all of the lifted tangent inequalities if y ≥ uzx and x ≥ uzy.

Next assume that y ≤ uzx. The situation is now very similar to that encountered in

the proof of Proposition 2, except that the lifted tangent inequality is tight on a line

segment connecting a point (x∗,y∗, lz) with x∗y∗ = lz to the point (1,uz,uz), rather than

(1,1,1). A similar process to that used in the proof of Proposition 2 again results in

a quadratic equation for α such that x = αx∗ +(1−α), y = αy∗ +(1−α)uz, and

substituting the appropriate root into the inequality z ≤ αlz +(1−α)uz results in the

inequality

z ≤ uzx+ y−
√

(uzx− y)2 +4lz(1− x)(uz − y)
2

.

It is straightforward to verify that (uzx− y)2 + 4lz(1− x)(uz − y) = (x̂, ŷ)M1(x̂, ŷ)T ,

where x̂ := 1− x, ŷ := uz − y, and M1 � 0 follows from lz ≤ uz. Therefore, the con-

straint
√
(x̂, ŷ)M1(x̂, ŷ)T ≤ uzx+ y− 2z implies the lifted tangent inequalities when

y ≤ uzx. The analysis when x ≤ uzy is very similar, interchanging the roles of x and

y. �	
Note that if uz = 1 then M1 =M2 =M, where M � 0 was given in Proposition 2. In

this case, we always have either x ≤ y or y ≤ x, so the “center” SOC constraint is not

present and the two “side” SOC constraints are identical and equal to the constraint

in Proposition 2. If lz = 0, then the SOC constraint that applies when y ≥ uzx and

x ≥ uzy is identical to the SOC constraint from Proposition 1. Moreover, if lz = 0 and

y≤ uzx, then (x̂, ŷ)M1(x̂, ŷ)T = (uzx−y)2, and the SOC constraint
√
(x̂, ŷ)M1(x̂, ŷ)T ≤

uzx+ y−2z is exactly the RLT constraint z ≤ y. Similarly for lz = 0 and x ≤ uzy, the

SOC constraint
√
(x̂, ŷ)M2(x̂, ŷ)T ≤ x+uzy−2z becomes the RLT constraint z ≤ x.

In Figure 5, we illustrate conv(F ′) for l = (0,0,0.2), u = (1,1,0.7). As in Figure

3 the dashed red lines indicate edges corresponding to the RLT constraints (2c) –
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Fig. 6: Center cone only with RLT constraints

(2d), with lx and ly increased to lz = 0.2 in the formulas for these constraints, as in

(1).

It is easy to show that the “side” SOC constraints from Proposition 3 that are

applicable on the domains y ≤ uzx and x ≤ uzy are not valid outside these domains.

However, the “center” constraint is valid for all (x,y,z) ∈ conv(F ′). To see this, note

that if lz ≤ z = xy ≤ uz, then

(
√

uz −√
xy)(

√
xy−

√
lz)≥ 0

⇔ (
√

lz +
√

uz)
√

xy ≥ xy+
√

lzuz

⇔ (z+
√

lzuz)
2 ≤ (

√
lz +

√
uz)

2xy. (6)

The fact that the center constraint is globally valid means that we can approximate

conv(F ′) by using this one SOC constraint together with the RLT constraints (2c) –

(2d), where these RLT constraints can be tightened by using the values lx = ly = lz
in their definitions, as in (1). We illustrate this approximation in Figure 6 for the

case where lz = 0.2, uz = 0.7, as in Figure 5. It appears that the use of this one

SOC constraint together with the RLT constraints gives a very close approximation

of conv(F ′). To show this more precisely, in Figure 7 we consider the same case

of lz = 0.2, uz = 0.7 but show three slices, or cross-sections, corresponding to the

values z = 0.3, z = 0.45 and z = 0.6. At each value for z the gray shaded area is the

difference between conv(F ′) as given by the three SOC constraints from Proposition

3 and the region determined by the center SOC constraint (6) combined with the RLT

constraints (2c) – (2d).

To further investigate the difference between conv(F ′) and the approximation

that uses the center cone and RLT constraints we performed the following com-

putational investigation. For given 0 < lz < uz ≤ 1, consider (x∗,y∗, lz) ∈ F ′ with

y∗ < uzx∗; note then that y∗ = lz/x∗ ⇒ x∗ ≥√
lz/uz. Then the lifted tangent inequal-
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Fig. 7: Cross-sections of convex hull vs. center cone only with RLT constraints

Table 1: Max change in normalized lifted tangent inequality using only center cone

lz \uz 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.0010 0.0028 0.0050 0.0073 0.0096 0.0119 0.0142 0.0164 0.0186

0.2 0.0006 0.0019 0.0036 0.0056 0.0076 0.0098 0.0119 0.0141

0.3 0.0004 0.0015 0.0028 0.0045 0.0062 0.0081 0.0101

0.4 0.0003 0.0012 0.0023 0.0037 0.0052 0.0069

0.5 0.0003 0.0009 0.0019 0.0031 0.0045

0.6 0.0002 0.0008 0.0016 0.0027

0.7 0.0002 0.0007 0.0014

0.8 0.0002 0.0006

0.9 0.0001

ity (3) generated using (x∗,y∗, lz) is also tight at the point (1,uz.uz), from which it

is easy to compute that a = (2lz − y∗ − uzx∗)/(uz− lz). We then minimize the lin-

ear function y∗x+ x∗y+az over the approximation given by the center cone, bounds

on z and RLT constraints. The minimum value will be lower than lz(2+ a), which

would be the minimum if the side cone from Proposition 3 was included. Taking the

difference and dividing by
√

x∗2 + y∗2 +a2 then gives the Euclidean distance that

the lifted tangent inequality must be translated in order to support the approximation

given by the center cone and RLT constraints. For given lz,uz we can then vary x∗ in

the interval [
√

lz/uz,1] in an effort to maximize this normalized difference. In table

1 we illustrate the results using values of lz and uz that are multiples of 0.1. In no

case does the change in the normalized lifted tangent inequality exceed 0.02, again

demonstrating that the center cone, RLT constraints and bounds on z provide a close

approximation to conv(F ′) .



Convex Hull Representations for Bounded Products of Variables 13

In addition to the approximation based on one SOC constraint, it is possible

to give an exact disjunctive representation of conv(F ′) over the entire region cor-

responding to the bounds l = (0,0, lz), u = (1,1,uz) by using additional variables

(λi,xi,yi,zi), i = 1,2,3, where λ ≥ 0, uzx1 ≤ y1 ≤ x1/uz, y2 ≤ uzx2, x3 ≤ uzy3, and

x =
3

∑
i=1

xi, y =
3

∑
i=1

yi, z =
3

∑
i=1

zi,
3

∑
i=1

λi = 1.

Each (xi,yi,zi) is then constrained to be in one of the regions given in Proposition 3,

homogenized using the variable λi. We omit the straightforward details.

3.4 Volume computation

As an application of the above results, in this section we will compare the volumes

of conv(F ′) that are obtained by applying the SOC constraints described in Proposi-

tions 1 and 2 to the volumes of the regions corresponding to the RLT constraints and

the simple bound constraints z ≤ uz or z ≥ lz (but not both). Computing these volumes

will also allow us to compute the total volume reduction that is obtained by creating

two subproblems, one corresponding to imposing an upper bound z ≤ b and the other

a lower bound z ≥ b.

In the case of an upper bound z ≤ uz, it is straightforward to compute that the

volume of the RLT region with the additional constraint z ≤ uz is uz(u2
z −3uz +3)/6.

To compute the volume of conv(F ′) it is convenient to compute the volume of the

RLT region that is removed when the SOC constraint z2 ≤ uzxy from Proposition 1

is added. To do this, consider the intersection of conv(F ′) with a level set z = z̄,

0 < z̄ ≤ uz. The portion of the RLT region removed by the SOC constraint on this

level set is then bounded by x = z̄, y = z̄, and the curve xy = z̄2/uz. The area removed

on the level set z = z̄ is then given by

∫ z̄/uz

z̄

(
z̄2

uzx
− z̄

)
dx,

which evaluates to (z̄2/uz)(uz − 1− ln(uz)). The total volume of the RLT region re-

moved by the SOC constraint is then

uz −1− ln(uz)

uz

∫ uz

0
z2 dz =

u2
z (uz −1− ln(uz))

3
,

and the volume of conv(F ′) with bounds l = (0,0,0), u = (1,1,uz) is

uz(u2
z −3uz +3)

6
− u2

z (uz −1− ln(uz))

3
=

uz

6

(
3+2uz ln(uz)−uz −u2

z
)
. (7)

In the case of a lower bound z ≥ lz, the volume of the RLT region with the added

constraint z ≥ lz is (1− lz)3/6, where here we impose the RLT constraints (2c) – (2d)

using lx = ly = 0. To compute the volume of conv(F ′) we consider the portion of the

RLT region removed by the SOC constraint from Proposition 2. Considering a level
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Fig. 8: Volume comparisons for convex hulls versus RLT regions with added bounds

on z.

set z = z̄, lz ≤ z̄ < 1, the portion of the RLT region removed by the SOC constraint is

bounded by x = z̄, y = z̄, and a curve of the form

x = αx∗+(1−α), y = α
lz
x∗

+(1−α), α =
1− z̄
1− lz

, lz ≤ x∗ ≤ 1.

Writing x∗ = (x+α −1)/α , substituting in the value of α and simplifying then ob-

tains a representation for this curve

y = f (x, z̄) =
1

1− lz

(
lz(1− z̄)2

x(1− lz)+ lz − z̄
+ z̄− lz

)
, z̄ ≤ x ≤ 1.

The area of the RLT region on the level set z = z̄ removed by the SOC constraint is

then ∫ 1

z̄
( f (x, z̄)− z̄)dx,

which evaluates to lz(lz − 1− ln(lz))(1− z̄)2/(1− lz)2. Therefore the total volume

removed by the SOC constraint is

lz(lz −1− ln(lz))
(1− lz)2

∫ 1

lz
(1− z)2 dz =

lz(1− lz)(lz −1− ln(lz))
3

,

and the volume of conv(F ′) with bounds l = (0,0, lz), u = (1,1,1) is

(1− lz)3

6
− lz(1− lz)(lz −1− ln(lz))

3
=

(1− lz)
6

(
1+2lz ln(lz)− l2

z
)
. (8)

We illustrate these volume computations in Figure 8. Let b represent the bound

depicted on the horizontal access. In the figure the UB: SOC+RLT series shows the
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Fig. 9: Volume ratios between convex hulls and RLT regions with added bounds on z

volume of conv(F ′) with an upper bound uz= b from (7), and for comparison UB:

RLT shows the volume of the RLT region cut at z = uz= b. The LB: SOC+RLT series

similarly shows the volume of conv(F ′) with a lower bound lz= b from (7), and for

comparison LB: RLT shows the volume of the RLT region cut at z= lz= b. The SUM:

SOC+RLT series shows the sum of the two volumes from (7) and (8) if lz = uz = b.

The sum of the volumes of the two RLT regions, one cut from below at lz = b and

the other cut from above at uz = b, is constant and equal to 1/6. From the chart

it is evident that the sum of the volumes of the two convex hulls is minimized at

approximately b = 0.2; the exact minimizer satisfies the nonlinear equation ln(b) =
2(b−1). In Figure 9, we graph the ratio of the volume (7) to that of the RLT region

cut at uz = b, the ratio of the volume (8) to that of the RLT region cut at lz = b,

and the ratio of the sum of the two volumes to that of the total RLT region. The

volume of the sum is reduced by approximately 32.4% at the minimizing value. This

has an interesting interpretation as the possible effect of applying spatial branching

to the continuous variable z, where one subproblem has an upper bound uz = b and

the other has a lower bound lz = b. In Figure 10, we illustrate the effect of such

a branching by showing the convex hulls for uz = 0.3 and lz = 0.3; in this case, a

total of approximately 30% of the volume of the original RLT region is removed

by considering the two subproblems. See [10] for a recent survey of volume-based

comparisons of polyhedral relaxations for nonconvex optimization, and [19] for an

application to branching-point selection in the presence of trilinear terms.

4 Convex hull representation with general (lx, ly)

In this section, we consider the case where the original variables (x,y) have more

general bounds of the form 0 ≤ lx ≤ x ≤ ux, 0 ≤ ly ≤ y ≤ uy. In particular, lx and ly can

be strictly positive. We continue to assume without loss of generality that ux = uy = 1

since this can always be achieved by a simple rescaling of x and/or y. Furthermore,
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Fig. 10: Effect of spatial branching on z

as discussed in the introduction, we now assume without loss of generality that (1)

holds.

4.1 Non-trivial lower bound on xy with general (lx, ly)

With general lower bounds on (x,y) and a non-trivial lower bound on the product z,

conv(F ′) can be described almost identically to the representation given in Proposi-

tion 2 for the case of lx = ly = 0.

Proposition 4 Let l = (lx, ly, lz), u = (1,1,1) where 0 ≤ lxly < lz < 1. Then conv(F ′)
is given by the RLT constraints (2), the bound z ≥ lz and the second-order cone con-
straint

√
(x̂, ŷ)M(x̂, ŷ)T ≤ x+ y−2z where x̂ := 1− x, ŷ := 1− y, and

M =

(
1 2lz −1

2lz −1 1

)
� 0.

Proof The construction of the SOC constraint that implies the lifted tangent inequal-

ities is identical to the case of lx = ly = 0 which was considered in the proof of

Proposition 2, and this SOC constraint together with the RLT constraints (2) and the

bound z ≤ uz gives conv(F ′). However, in contrast to Proposition 2, if lx > lz then

the constraint (2c) is no longer redundant, if ly > lz the constraint (2d) is no longer

redundant, and in both cases, the constraint (2b) is no longer redundant. �	

In Figure 11, we illustrate conv(F ′) for l = (0.3,0.5,0.3), u = (1,1,1). Since

ly > lz, the constraints (2d) and (2b) are now active.
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Fig. 11: Convex hull with general lower bounds on (x,y,z).

4.2 Non-trivial upper bound on xy with general (lx, ly)

With general lower bounds lx and ly and a non-trivial upper bound on z, the geometry

of conv(F ′) is similar to the case of lx = ly = 0 which was considered in Section

3.1, but the derivation of the conic constraint in SOC form is more complex. Lifted

tangent inequalities now correspond to line segments joining a point (x̄, ȳ,uz)∈ F ′
with the point (lx, ly, lxly). For a point (x,y,z) on such a line segment we have x =
αlx +(1−α)x̄, y = αly +(1−α)ȳ. Writing (x̄, ȳ) in terms of (x,y) then results in a

quadratic equation for α , and for the appropriate root of this equation the constraint

x ≤ α(lxly)+(1−α)uz results in the constraint

(z− lyx)(z− lxy)≤ uz(x− lx)(y− ly). (9)

This constraint is certainly valid for all (x,y,z) ∈ conv(F ′). In particular, if z = xy ≤
uz then (z− lyx) = x(y− ly) and (z− lxy) = y(x− lx), so (z− lyx)(z− lxy) = xy(x−
lx)(y− ly) ≤ uz(x− lx)(y− ly). Note that if lx = ly = 0, then (9) is exactly the SOC

constraint z2 ≤ uzxy from Proposition 1. If either lx = 0 or ly = 0, it is also easy to put

the constraint (9) into the form of an SOC constraint, but when lx > 0, ly > 0 this is

nontrivial.

Proposition 5 Let l = (lx, ly,0), u = (1,1,uz) where 0 < uz < 1. Then conv(F ′) is
given by the RLT constraints (2), the bound z ≤ uz and the SOC constraint

uz(z− lxly)2 ≤ (
uz(x− lx)+ lx(z− lyx)

)(
uz(y− ly)+ ly(z− lxy)

)
. (10)

Proof The convex hull of F ′ is given by the RLT constraints, the bound z ≤ uz, and

the lifted tangent inequalities, and the latter are implied by the constraint (9). By a

direct computation the constraint (10) is equivalent to multiplying both sides of (9)

by the constant uz − lxly > 0. Moreover, x ≥ lx, y ≥ ly and the RLT constraint (2b)



18 Kurt M. Anstreicher et al.

Fig. 12: Convex hull with general lower bounds on (x,y) and non-trivial upper bound

on z

together imply that z ≥ lyx and z ≥ lxy. Both terms that form the product on the right-

hand side of (10) can therefore be assumed to be nonnegative, so (10) is an SOC

constraint that implies the lifted tangent inequalities. �	

The proof of Proposition 5 requires only that (9) and (10) are equivalent, but it

is worth noting how (10) was obtained. This was accomplished by writing (9) in the

form vT Qv ≤ 0, where v = (1,x,y,z)T , and then performing symbolic, symmetric

transformations on Q so as to obtain

SQST = Q̂ =

⎛
⎜⎜⎝

2uz 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 0

⎞
⎟⎟⎠ .

Note that vT Qv= vT S−1Q̂S−T v, and Q̂ has exactly one negative eigenvalue. The spec-

tral decomposition of Q̂ and the symbolic matrix S−T were together used to obtain

the equivalent SOC constraint (10). In Figure 12, we illustrate conv(F ′) for the case

with uz = 0.7 and lower bounds lx = 0.4, ly = 0.5.

4.3 Non-trivial lower and upper bounds on xy with general (lx, ly)

We now consider the most general case for F ′, where l = (lx, ly, lz) > 0 and uz < 1.

We continue to assume that ux = uy = 1, and lz ≤ lx ≤ uz, lz ≤ ly ≤ uz as described at

the beginning of the section. Finally, we assume that lxly < lz, since otherwise lxly ≥ lz
implies that the lower bound xy ≥ lz is redundant, which is the case of the previous

section.
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Fig. 13: Domains for (lx, ly) with lz = 0.1, uz = 0.7

In order to describe the possible representations for conv(F ′), it is very conve-

nient to dissect the domain for possible values of (lx, ly) into regions where represen-

tations of a particular type occur. These regions naturally involve the values
√

lzuz
and

√
lz/uz. In particular, note that the point (x,y) = (

√
lz/uz,

√
lzuz) is the intersec-

tion of the line y = uzx and the curve xy = lz, while (x,y) = (
√

lzuz,
√

lz/uz) is the

intersection of the line x = uzy and the curve xy = lz. Under our assumptions for the

values of l and u, the possible regions for (lx, ly) are as follows and are illustrated in

Figure 13 for the case of lz = 0.1, uz = 0.7.

A. lx ≥
√

lzuz, ly ≥
√

lzuz, lxly < lz.

B. lz ≤ lx ≤
√

lzuz, lz ≤ ly ≤
√

lzuz.

C. lz ≤ lx ≤
√

lzuz,
√

lzuz ≤ ly ≤
√

lz/uz.

D. lx ≥ lz,
√

lz/uz ≤ ly ≤ uz, lxly ≤ lz.

E.
√

lzuz ≤ lx ≤
√

lz/uz, lz ≤ ly ≤
√

lzuz.

F.
√

lz/uz ≤ lx ≤ uz, ly ≥ lz, lxly ≤ lz.

It is clear that regions E and F correspond to regions C and D, respectively, with

the roles of x and y interchanged. Since we can assume without loss of generality

that lx ≤ ly, in the results below we will only consider regions A–D. We omit proofs

of these results since in all cases, they are based on SOC representations for lifted

tangent inequalities described in earlier sections. In each of the four cases, the rep-

resentation of conv(F ′) will include several SOC constraints that imply the lifted

tangent inequalities on different (x,y) domains. In Figure 14, we illustrate these do-

mains using values of (lx, ly) corresponding to each of the regions A–D, with lz = 0.1,
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Fig. 14: Domains for SOC constraints with lz = 0.1, uz = 0.7

uz = 0.7 as in Figure 13. In the figure, the boundaries of domains on which different

SOC constraints imply the lifted tangent inequalities are given by solid black lines,

and blue lines indicate the region (x,y)≥ (lx, ly).

Proposition 6 Suppose that (lx, ly) is in region A. Then conv(F ′) is given by the
RLT constraints, the bounds lz ≤ z ≤ uz, and the following three SOC constraints,
each applicable in a different region:

1. The constraint (6), applicable if y ≥ (l2
y/lz)x, y ≤ (lz/l2

x )x.

2. The constraint (10), but with lx replaced by lz/ly, applicable if y ≤ (l2
y/lz)x.

3. The constraint (10), but with ly replaced by lz/lx, applicable if y ≥ (lz/l2
x )x.

Note that the first constraint in Proposition 6 is exactly the constraint based on

(lz,uz) from Proposition 3. This constraint is globally valid and is binding in the

region y≥ (l2
y/lz)x, y≤ (lz/l2

x )x. The second constraint corresponds to using the lower

bounds (lz/ly, ly) in Proposition 5, and is certainly then valid for all (x,y)≥ (lz/ly, ly),
where lz/ly > lx by assumption. Note also that y ≤ (l2

y/lz)x and y ≥ ly together imply

that x ≥ lz/ly. Similarly, the third constraint is valid for all (x,y) ≥ (lx, lz/lx). The

regions on which the second and third constraints are actually binding can easily be

determined from the points (lz/ly, ly), (lx, lz/lx), (1,uz) and (uz,1); see Figure 14.
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For (lx, ly) in region B, the representation with lower bounds (lx, ly)> 0 is essen-

tially identical to that given in Proposition 3, except that the RLT constraints can now

all be active.

Proposition 7 Suppose that (lx, ly) is in region B. Then conv(F ′) is given by the RLT
constraints, the bounds lz ≤ z ≤ uz, and the three SOC constraints from Proposition
3, where each constraint is applicable for the (x,y) values as given in Proposition 3.

For (lx, ly) in region C, the representation with lower bounds (lx, ly) > 0 uses a

mixture of the SOC constraints that appear in Propositions 6 and 7.

Proposition 8 Suppose that (lx, ly) is in region C. Then conv(F ′) is given by the
RLT constraints, the bounds lz ≤ z ≤ uz, and the following three SOC constraints,
each applicable on a different region:

1. The constraint (6), applicable if y ≥ (l2
y/lz)x, y ≤ x/uz.

2. The constraint (10), but with lx replaced by lz/ly, applicable if y ≤ (l2
y/lz)x.

3. The constraint
√
(x̂, ŷ)M2(x̂, ŷ)T ≤ x+uzy−2z, where x̂ := uz −x, ŷ := 1−y and

M2 � 0 is given in (5), applicable if x ≤ uzy.

The remaining case, where (lx, ly) is in region D, is qualitatively different from

the three previous cases because the “center cone” from Proposition 3 does not ap-

pear in the representation of conv(F ′). There are only two second-order cones in

the representation, and the boundary between the regions on which these cones are

active is not homogeneous. This boundary is given by the line which joins the points

(lz/ly, ly) and (uz,1), whose equation is y = a+bx, where

a =
uzl2

y − lz
uzly − lz

, b =
ly(1− ly)
uzly − lz

. (11)

Proposition 9 Suppose that (lx, ly) is in region D. Then conv(F ′) is given by the
RLT constraints, the bounds lz ≤ z ≤ uz, and the following two SOC constraints, each
applicable in a different region:

1. The constraint (10), but with lx replaced by lz/ly, applicable in the region y ≤
a+bx, where a and b are given by (11).

2. The constraint
√

(x̂, ŷ)M2(x̂, ŷ)T ≤ x+uzy−2z, where x̂ := (uz − x), ŷ := (1− y)
and M2 � 0 is given in (5), applicable if y ≥ a+ bx, where a and b are given by
(11).

In Figure 15, we illustrate examples of conv(F ′) for lz = 0.1, uz = 0.7 and values

of lx, ly in each of the four regions A–D shown in Figure 13.

Note that neither of the constraints in Proposition 9 is globally valid; the first is

valid for x ≥ lz/ly and the second is valid for y ≥ x/uz. In fact, all of the represen-

tations in this section involve some SOC constraints that are not globally valid. In

order to represent conv(F ′) over the entire set of feasible (x,y) in any of these cases,

one could use a disjunctive representation as described at the end of Section 3.3. Al-

ternatively, we could always use the SOC constraint (6) together with the constraint
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(a) Case A: lx = 0.32, ly = 0.28 (b) Case B: lx = 0.14, ly = 0.2

(c) Case C: lx = 0.14, ly = 0.3
(d) Case D: lx = 0.14, ly = 0.5

Fig. 15: Convex hulls with general lower bounds on x and y: lz = 0.1, uz = 0.7

(10) since both of these are globally valid. We would expect that these two SOC

constraints together with the RLT constraints and bounds on z would give a close

approximation of conv(F ′) in many cases.

As described in the Introduction, [14] considers the convex hull for a generaliza-

tion of F ′ where z = xyb, b ≥ 1, x ∈ [1,ux], y ∈ [1,uy]. For the case b = 1, our results

with 0 < lx < 1, 0 < ly < 1 can be compared with the results of [14] by scaling the

variables x,y and z by 1/lx, 1/ly and 1/(lxly), respectively. To make this comparison

precise, let (x̄, ȳ, z̄) be variables with x̄ ∈ [1,ux̄], ȳ ∈ [1,uȳ], z̄ ∈ [lz̄,uz̄]. For variables

(x,y,z) as in this paper, with lx > 0, ly > 0, we can then make the identification:

x̄ =
x
lx
, ȳ =

y
ly
, z̄ =

z
lxly

, ux̄ =
1

lx
, uȳ =

1

ly
, lz̄ =

lz
lxly

, uz̄ =
uz

lxly
.

Substituting throughout and simplifying, it is then easy to verify that the constraint

(6) can be written in terms of the variables (x̄, ȳ, z̄) as

(z̄+
√

lz̄uz̄)
2 ≤ (

√
lz̄ +

√
uz̄)

2x̄ȳ,
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so that the constraint in the variables (x̄, ȳ, z̄) has exactly the same form as the con-

straint in the variables (x,y,z). Since (6) appears as part of the convex hull characteri-

zations in Propositions 6, 7 and 8, we would therefore expect to see a constraint equiv-

alent to (6) in the results of [14]. This is indeed the case. In particular, for a = b = 1,

(37) of [14] is the inequality

√
x
√

y ≥
√

lz

(
uz − z
uz − lz

)
+
√

uz

(
z− lz
uz − lz

)
,

which is equivalent to each of the following inequalities:

√
xy ≥

√
lz(uz − z)+

√
uz(z− lz)

(
√

uz −
√

lz)(
√

uz +
√

lz)

√
xy(

√
uz +

√
lz) ≥

(
√

uz −
√

lz)z+
√

lzuz(
√

uz −
√

lz)
(
√

uz −
√

lz)
√

xy(
√

uz +
√

lz) ≥ z+
√

lzuz,

the last of which is obviously equivalent to (6).

5 Conclusion

We have shown that in all cases, conv(F ′) can be represented using a combination

of RLT constraints, bound(s) on the product variable z and no more than three SOC

constraints. In cases where more than one SOC constraint is required to represent

conv(F ′), each such constraint is applicable on a subset of the domain of (x,y) val-

ues, but one or two globally valid SOC constraints can be used together with the RLT

constraints and bounds on z to approximate conv(F ′).
Our results suggest a number of promising directions for future research. First,

it may be possible to extend some of these results to the case of multilinear terms,

where z is the product of n> 2 variables; an extension of the lifted tangent inequalities

to n > 2 is described in [6]. Second, it would be interesting to extend the convex

hull description for the complete 5-variable system in [4] to allow for bounds on the

product xy. Note that the results of [4] already apply to arbitrary bounds 0 ≤ lx ≤
x ≤ ux, 0 ≤ ly ≤ y ≤ uy, and bounds on the squared terms x2 and/or y2 are equivalent

to bounds on the original variables (x,y). However, the results of [4] do not allow

for an additional bound on the product xy. Finally, an extension of the results here

to the case of z = xT y, where x ∈ R
n
+, y ∈ R

n
+, would be very significant since such

bilinear terms appear in many applications, such as the well-known chemical pooling

problem; see for example [2] and references therein.
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