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Chapter 17

The Steinberg Wiring Problem

Nathan W. Brixius∗ and Kurt M. Anstreicher†

It is clear that much more effort is needed and
should be expended to solve this interesting riddle posed
to combinatorial optimizers well over 35 years ago.

—M.W. Padberg and M.P. Rijal (1996)

MSC 2000. 90C27, 90C09, 90C10
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17.1 Introduction
In a 1961 paper [44], Leon Steinberg described a “backboard wiring” problem that has
resisted solution for 40 years. The problem concerns the placement of computer components
so as to minimize the total amount of wiring required to connect them. In the particular
instance considered by Steinberg, 34 components with a total of 2625 interconnections are
to be placed on a backboard with 36 open positions. The geometry of the backboard is
illustrated in Figure 17.1.

To formulate the wiring problem mathematically it is convenient to add two dummy
components, with no connections to any others, so that the numbers of components and
locations are both n = 36. Let aik be the number of wires that connect components i and
k and bjl be the “distance” between locations j and l on the backboard. (There are several
possible choices for the bjl . In his paper Steinberg considered using 1-norm, 2-norm, and
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Figure 17.1. Backboard for Steinberg problem.

squared 2-norm distances between the backboard locations.) Let xij = 1 if component i is
placed at location j on the backboard and xij = 0 otherwise. Doubling the objective, the
problem can then be written in the form

(SWP) min
∑
i,j,k,l

aikbjlxij xkl subject to

∑
j

xij = 1, i = 1, . . . , n,

∑
i

xij = 1, j = 1, . . . , n,

xij ∈ {0, 1}, i, j = 1, . . . , n.

Note that the constraints of SWP are exactly thatX = {xij } is an n×n-permutation matrix.
Steinberg devised a heuristic method to obtain (hopefully) a good solution for the

wiring problem and applied it to the 2-norm and squared 2-norm versions of the problem.
Most subsequent research has been directed to the 1-norm formulation.

In this chapter we describe the development of a branch-and-bound (B&B) algorithm
to solve the 1-norm version of SWP to optimality. SWP is an example of a quadratic
assignment problem (QAP), described in the next section. In Section 17.3 we describe
lower-bounding schemes that have been proposed for QAP. In Section 17.4 we give some
comparisons between bounds on SWP and similar problems, outline the construction of a
complete B&B algorithm, and give computational results.

17.2 Quadratic Assignment Problems
The general QAP, introduced by Lawler [30], has the form

(QAP) min
∑
i,j,k,l

dijklxij xkl subject to

X ∈ Y,
where Y denotes the set of n× n-permutation matrices. The problem SWP is an example
of a “symmetric Koopmans–Beckmann” QAP (KBP). The term “Koopmans–Beckmann”
denotes that the objective coefficient for xij xkl has the product form aikbjl , and “symmetric”
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means that aij = aji and bij = bji for all i, j . The 1-norm, 2-norm, and squared 2-norm
versions of SWP are now known as the ste36a, ste36c, and ste36b QAPs; these and all other
problem names are taken from QAPLIB [11].

The QAP can be used to formulate a variety of interesting problems in location the-
ory, manufacturing, data analysis, and other areas [9, 12, 40]. Unfortunately, the QAP is,
typically, extraordinarily difficult to solve due to its size. Several well-known combinatorial
optimization problems, such as the traveling salesman problem (TSP), can be formulated as
QAPs, and therefore the QAP is NP-hard. However, while TSPs with thousands of cities are
now tractable [6, 37], in general a QAP with n = 30 presents a formidable computational
challenge. For example, the well-known nug30 problem, posed in 1968 [34], was only
recently solved using the equivalent of approximately seven years of serial computation [2].

Because of the extreme difficulty of the QAP, many heuristic approaches have been
proposed to generate what we hope are good quality solutions. These techniques include
GRASP [39], genetic algorithms [16], simulated annealing [14], tabu search [43, 45], and
ant systems [17]. The best known objective value for the 1-norm version of SWP, 9526,
was first obtained in 1990 using a tabu search algorithm [43] and has been subsequently re-
discovered many times. One permutation (assignment of components to locations) attaining
this value is

(12, 19, 30, 11, 2, 3, 22, 20, 10, 21, 5, 4, 13, 15, 31, 32, 28, 29,

24, 14, 17, 18, 16, 9, 8, 7, 6, 23, 33, 34, 35, 25, 27, 26, 1, 36).

Note that in this assignment the two dummy components (numbers 35 and 36) are placed
in corners of the grid that are diagonally opposite one another.

17.3 Solution Approaches for the Quadratic Assignment
Problem

Most exact solution methods for the QAP have been of the B&B type. A key component in
such algorithms is the choice of method used to obtain lower bounds. There are a variety
of lower-bounding approaches for the QAP, some of which have been used successfully in
complete B&B algorithms.

17.3.1 Gilmore–Lawler bound

The most widely used lower bound for the QAP is the Gilmore–Lawler bound (GLB)
[18, 30]. Note that the objective in QAP can be written in the form

∑
i,j

(∑
k,l

dijklxkl

)
xij .

Let fij denote the solution value in the linear assignment problem (LAP)

min
∑
k,l

dijklxkl subject to

X ∈ Y, xij = 1.
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It is then clear that GLB := LAP(F ) ≤ QAP, where LAP(F ) denotes the LAP with cost
matrix F , and for convenience we use the name of an optimization problem to also refer to
its solution value. For the general QAP the computation of GLB requires the solution of
n2 + 1 LAPs. However, for a KBP the LAP associated with each fij is trivial to solve, and
as a result F can be obtained in a total of only O(n3) operations.

Several successful B&B algorithms for the QAP have utilized the GLB [8, 10, 13, 33].
GLB-based algorithms have proved effective for problems up to about size n = 24, but for
larger problems the growth in nodes may become overwhelming.

17.3.2 Eigenvalue and related bounds

A KBP, with an added linear term, can be written in the matrix form

(KBP) min
X∈Y tr(AXB + C)XT ,

where tr(·) denotes the trace of a matrix. When A and B are symmetric, a bound for the
quadratic term can be based on the fact that X ∈ Y ⇒ X ∈ O, where O denotes the set
of orthogonal matrices: O = {X |XXT = I }. For a symmetric matrix A let λ(A) ∈ Rn

denote the vector of eigenvalues ofA, and for vectors u and v let 〈u, v〉− denote the “minimal
product”

〈u, v〉− := min
π

n∑
i=1

uivπ(i),

where π(·) is a permutation of 1, 2, . . . , n. It is easy to show that 〈u, v〉− is obtained by
putting the components of one of the vectors in nondecreasing order, and the components
of the other in nonincreasing order, before taking the inner product. It can then be shown
[15] that

min
X∈O

tr(AXBXT ) = 〈λ(A), λ(B)〉−, (17.1)

and therefore
〈λ(A), λ(B)〉− + LAP(C) (17.2)

is a valid lower bound for a symmetric KBP. Unfortunately, the basic eigenvalue bound
(17.2) is too weak to be computationally useful. Various schemes for improving the bound
have been considered [15, 19, 41]. The most promising of these appears to be the projected
eigenvalue bound (PB) of [19]. The construction of PB is based on enforcing the row and
column sum constraints on X, in addition to orthogonality. Let V be an n× (n− 1) matrix
whose columns are an orthonormal basis for the nullspace of eT = (1, 1, . . . , 1), and let
D = C + (2/n)AeeT B. Then

PB := 〈λ(V T AV ), λ(V T BV )〉− + LAP(D)− 1

n2
(eT Ae)(eT Be).

As shown in [19], for many problems PB provides a good quality bound at modest compu-
tational cost.

A quadratic programming bound (QPB) for KBP that is related to PB was devised in
[4]. By construction QPB ≥ PB, and evaluating QPB requires the approximate solution of a
convex quadratic program (QP) in the n2 variablesX. In [4] QPB was evaluated by solving
the QP using an interior-point algorithm. This approach provides a very accurate solution,
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but is too expensive to use in a B&B context. In [7] the Frank–Wolfe (FW) algorithm is used
to approximately solve the QP associated with QPB. Although the asymptotic properties
of the FW algorithm are known to be poor, this scheme is of interest in the context of
QPB because the work on each iteration of the FW algorithm is dominated by the solution
of an LAP. The resulting B&B algorithm exhibits state-of-the-art performance on many
benchmark KPBs. In [2] the same QPB-based B&B algorithm, implemented using the
“master-worker” distributed processing platform, obtains the first solution of several large
problems including the nug30 QAP.

There has also been recent work devising bounds for KBP based on semidefinite
programming. In [5] it is shown that there is a semidefinite programming interpretation
for (17.1), and this interpretation is used in the derivation of QPB in [4]. Semidefinite
programming bounds for KBP are described in [31] and [46]. In [3] it is shown that the
basic semidefinite programming bound of [46] is closely related to PB. More complex
semidefinite programming bounds described in [31] and [46] are also related to the linear
programming bounds described below. These semidefinite programming bounds are often
of excellent quality, but are obtained at a very high computational cost.

17.3.3 Linear programming and dual linear programming bounds

A large class of bounds for the QAP are related to linear programming relaxations of the
problem. Defining new variables yijkl = xij xkl and dropping the integrality conditions
results in a linear programming relaxation [1, 42]

(LPQAP) min
∑
i,j,k,l

yijkldijkl subject to

∑
j

xij = 1, i = 1, . . . , n,

∑
i

xij = 1, j = 1, . . . , n,∑
l

yijkl = xij , i, j, k = 1, . . . , n,∑
k

yijkl = xij , i, j, l = 1, . . . , n,

yijkl = yklij , i, j, k, l = 1, . . . , n, (17.3)

xij ≥ 0, yijkl ≥ 0, i, j, k, l = 1, . . . , n.

The symmetry constraints (17.3) imply that LPQAP can be formulated using variables
yijkl, i ≤ k. Additional variables can be eliminated using the facts that yijij = xij for
all i and j , yijil = 0 for all i and j �= l, and yijkj = 0 for all i �= k and j for X
feasible in QAP. Taken together, these observations allow for a reformulation of LPQAP
as a linear programming problem with n2 + n2(n − 1)2/2 variables. Further analysis [38,
Section 7.1] can be used to reduce the number of equality constraints required in LPQAP
to 2n(n− 1)2 − (n− 1)(n− 2), n ≥ 3. For a symmetric problem like SWP, LPQAP can be
formulated using n2+n2(n−1)2/4 variables and n2(n−2)+2n−1 equality constraints, n ≥
3 [25], [38, Section 7.3]. For a symmetric problem with n = 36, for example, LPQAP can
be written using 398,196 variables and 44,135 equality constraints. The solution of LPQAP
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using an interior-point method was investigated in [42]. This approach produces excellent
bounds for many problems, but appears to be prohibitively costly for implementation in a
B&B algorithm.

It is known [1] that, if the symmetry conditions (17.3) are dropped, then the solution
value in LPQAP is exactly GLB. It can also be shown [28] that many bounding schemes
for QAP can be viewed as Lagrangian procedures that attempt to approximately solve the
dual of LPQAP. Computationally, the most successful of these is a method motivated by
the Hungarian algorithm for LAP, due to P. Hahn and coworkers [20, 21, 22]. The B&B
code of Hahn et al. recently obtained the first solution of the kra30a QAP, a hospital layout
problem dating from 1972 [23].

In [28] a dual linear programming procedure similar to that proposed in [20] is used
to obtain a lower bound of 7860 for the 1-norm version of SWP. To our knowledge this is
the best known lower bound for the problem.

17.3.4 The polyhedral approach

The polyhedral approach to QAP is based on investigating the convex hull of 0/1-valued
solutions to the linear programming relaxation LPQAP. This line of research was initiated
by Padberg and Rijal [38] and has been further developed by Kaibel and Jünger [24, 25,
26, 27]. The convex hull of 0/1-valued solutions of LPQAP is a face of the Boolean
quadric polytope, studied in [36]. An essential element of the polyhedral approach is the
characterization of valid inequalities that can be added to LPQAP to tighten the relaxation.
In [38, Section 1.5] the polyhedral approach is applied to a linear programming relaxation
of SWP. (The relaxation is similar to LPQAP, but is specialized for a symmetric KBP
and also exploits sparsity of the matrix A.) Solution of the resulting linear program took
approximately one month on a 50MHz Sun workstation and obtained a lower bound of 7794.
This was the best known lower bound for the problem prior to the dual linear programming
bound obtained in [28].

The polyhedral approach to discrete optimization has resulted in very successful
branch-and-cut algorithms for particular discrete optimization problems such as TSP [37, 6].
Branch-and-cut algorithms typically invest a large amount of time generating valid inequal-
ities, and resolving subproblems, in an effort to reduce branching to a minimum. The
development of branch-and-cut algorithms for QAP is still in its infancy, but recent results
[24] indicate that the methodology promises to become a general purpose solution method.

17.4 Solving the Steinberg Problem
In this section we consider applying a B&B algorithm to solve the 1-norm version of SWP to
optimality. In Table 17.1 we give the values for a number of different bounds applied to the
problem. In the table “Sum” is the trivial bound obtained from the fact that there are 2625
interconnections1 between components and all distances are at least one. TDB, the triangle
decomposition bound of [29], is a parametric strengthening of PB that can be applied to
problems with distance matrices arising from 1-norms on grids. QPB is computed using

1The number of interconnections is given as 2620 in [44]. This appears to be due to an error in computing the
sum of the entries in row/column 29 of the matrix A; see [44, Figure 1].
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Table 17.1. Bounds for 1-norm wiring problem.

Bound Value Gap
Dual-LP 7860 17%
Polyhedral 7794 18%
GLB 7124 25%
TDB 6997 27%
Sum 5250 45%
QPB −10294 208%
PB −11700 223%

500 FW iterations (see [7] for details), and all gaps are computed relative to the best-known
value of 9526. It is clear that PB and the related QPB perform very poorly. The performance
of GLB is reasonable, and although the dual linear programming and polyhedral bounds
are better, the computational cost of these bounds is many orders of magnitude higher than
that of GLB. The computation to obtain TDB is also much greater than that required for PB
or GLB.

It is well known that eigenvalue bounds can be negative on instances of KBP for
which zero is a trivial lower bound. In [29] it is suggested that this poor performance may
be related to sparsity of the flow matrix A. In Figure 17.2 we give the sparsity (fraction of
zero components) and coefficient of variation (CV, equal to the standard deviation of the
components divided by their mean) for the flow matrices from a number of grid-based KBPs
from QAPLIB [11]. It is clear that ste36a is very sparse, with a high CV. In the context
of heuristics for QAP, CV is often termed “flow dominance” [17] and has been used as an
algorithm control parameter.
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Figure 17.2. Characteristics of flow matrices of grid-based QAPs.
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Figure 17.3. Gaps for bounds on grid-based QAPs.

In Figure 17.3 we give the gaps for GLB and QPB for the same problems considered
in Figure 17.2. The markers used to denote the problems are the same as in Figure 17.2.
The strong relationship between CV and the quality of QPB is evident. It is worth noting
that the most successful applications of QPB reported in [2, 7] correspond to problems with
relatively low CV values, such as had20, nug30, tho30, and kra30b. For had20, the problem
with the lowest CV, solution using QPB is faster than the GLB-based algorithm of [8] by
a factor of over 3000, after adjusting for hardware differences [7]. On the other hand, the
equivalent time to solve scr20 using QPB is about a factor of 2.2 times that required in
[8]. These observations suggest that QPB might not be a good candidate for the solution of
ste36a, and consequently we consider the application of a GLB-based B&B algorithm.

17.4.1 Branching rules

As described in Section 17.3.1, the value of GLB for a QAP is obtained from LAP(F ),
where F is first derived from the original problem data. Associated with the solution of
LAP(F ) is a nonnegative reduced-cost matrix U such that

F •X = z∗ + U •X
for any X with Xe = XT e = e, where F • X = tr(FXT ) and z∗ is the solution value in
GLB. (If X∗ solves LAP(F ), then X∗ •U = 0.) It follows that, if v is the value of a known
solution to QAP, then

z∗ + uij > v ⇒ xij = 0 (17.4)

in any optimal solution X of QAP.
The use of (17.4) to eliminate children in the course of branching was introduced in

[33], and it has been employed in many subsequent papers. Mautor and Roucairol [33]
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also introduced polytomic branching, where at any node candidate children are obtained
by either (row branching) fixing one facility and assigning it to all available locations, or
(column branching) fixing one location and assigning to it all available facilities. In our
implementation we use polytomic row and column branching. We consider two branching
rules, Rules 2 and 4, that are motivated by similar QPB-based branching rules from [7].
For simplicity we describe the rules here as they would be implemented at the root node,
using row branching. The problem associated with an arbitrary node in the B&B tree is
a lower dimensional QAP, on which the implementation of the rules is very similar. Let
N = {1, 2, . . . , n}.

Rule 2. Branch on the row i that produces the smallest number of children. In the event of
a tie, choose the row with the largest value

∑
j∈N ′

i
uij , where N ′

i = {j ∈ N | z+ uij < v}.

Note that the setN ′
i in Rule 2 consists exactly of the child problems xij = 1 that cannot

be eliminated. Rule 2 is an extension of the branching rule used in [33] and is effective
in reducing the size of the tree on small problems. Close to the root on larger instances,
however, the information provided by the reduced-cost matrix U may be insufficient to
make good branching decisions. Consequently, we consider obtaining more information
about the effect of setting xij = 1 before actually deciding where to branch.

Rule 4. Let I denote the set of rows having the NBEST highest values of
∑
j∈N uij . For

each i ∈ I , j ∈ N , compute the GLB zij for the QAP obtained by setting xij = 1. Let Uij

be the reduced-cost matrix associated with zij . Let vij be the maximal row sum of Uij , and
let wij = (|N | − 1)zij + vij . Branch on the row i having the highest value of

∑
j∈N wij .

In the context of B&B algorithms Rule 4 is an example of a strong branching rule
[32]. Because of the use of the Uij matrices, Rule 4 can also be viewed as a look-ahead
procedure that tries to maximize the bounds two levels deeper in the tree.

In addition to the elimination of children based on bounds, described above, redundant
children can be eliminated using symmetry of the grid on which the distance matrix B is
based (see Figure 17.1). For example, the children of the root node can be based on assign-
ments xij = 1, j ∈ J1 = {1:5, 10:14}, regardless of the choice of i. (For integersm < nwe
use m:n to denote the collection of integers k with m ≤ k ≤ n.) In addition, if at any node
the current assignments are all to locations contained in the set J2 = {5, 14, 23, 32}, then
the children can be restricted to xij = 1, j ∈ J3 = {1:5, 10:14, 19:23, 28:32}, regardless of
the choice of i. In cases where symmetry can be exploited we use row branching, with the
index set N in Rules 2 and 4 replaced by a suitable J ⊂ N . In all other cases Rules 2 and
4 are implemented so as to consider column branching as well as row branching, with only
minor modifications required. (For example, in Rule 2 we choose the row or column that
produces the least number of children.)

17.4.2 Computational results

We implemented a GLB-based B&B algorithm, using the branching rules described above,
to solve the 1-norm SWP. As in [2] the choice of branching rule to apply at a given node is
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Table 17.2. Branching strategy used to solve ste36a.

Rule Depth Gap NBEST
4a 5 0.35 36
4b 6 0.30 10
2 50 0.00 –

determined by depth in the tree and the relative gap. The relative gap for a node is defined
to be

g = v − z′
v − z0

,

where v is the incumbent value, z′ is the lower bound at the current node, and z0 is the root
lower bound. The exact branching strategy used is given in Table 17.2. At a given node the
rules are scanned from the top down until a rule is found whose maximum depth is greater
than or equal to the node’s depth, and whose minimum gap is less than the node’s relative
gap. The B&B tree was traversed using depth-first search.

The solution of the problem required a total of approximately 7.75 × 108 nodes in
the B&B tree. The best known value of 9526 was verified as being optimal. In Figure
17.4 we give the number of nodes at each level of the tree. Note the logarithmic scale for
the y-axis. Subproblems at level 33 of the tree correspond to QAPs of dimension three,
which were solved by enumeration. The solution required approximately 186 hours of CPU
time on a single 800 MHz Pentium III PC. (Based on a direct comparison this machine is
approximately 40% faster on our application than the HPTM 9000 model C3000 used in
[7].) In Figure 17.5 we give the cumulative CPU time (in hours) expended for the nodes
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Figure 17.4. Distribution of nodes in solution of ste36a.
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Figure 17.5. Relative gap and cumulative time in solution of ste36a.

up to each level of the tree. In the figure we also give the gap to optimality at each level,
computed using the minimum bound obtained at that level. From the figure it is clear that
it is relatively inexpensive to reduce the gap to about one-half its initial value. (The worst
bound for a level 6 node was 8388, corresponding to a gap of 12%. The cumulative time to
process all nodes at levels 0 to 6 is about 7 hours.)

To evaluate the effect of using Rule 4 at the top of the B&B tree we also ran the
algorithm using only Rule 2, through level 7. In Table 17.3 we give comparitive statistics
for the nodes through level 8 obtained from the solution run, and the run using only Rule 2.
“L” denotes the level in the B&B tree. The “Fthm” and “Elim” columns report the fraction
of nodes fathomed and the fraction of potential children of unfathomed nodes eliminated,
respectively. “Gap” is the average gap to the optimal value for nodes on a given level,

Table 17.3. Comparison of solution run with Rule 2 only.

Rule 2 only Solution run
L Nodes Gap Fthm Elim Nodes Gap Fthm Elim
0 1 2402.0 0.000 0.000 1 2402.0 0.000 0.000
1 10 2280.5 0.000 0.000 10 1953.7 0.000 0.054
2 318 1770.3 0.003 0.069 301 1218.4 0.000 0.421
3 9941 1239.8 0.080 0.549 5869 697.1 0.070 0.787
4 136112 727.7 0.209 0.580 38263 542.5 0.320 0.441
5 1445612 594.7 0.336 0.535 465182 354.3 0.404 0.569
6 13832243 438.4 0.445 0.629 3703103 260.8 0.579 0.752
7 85562934 322.4 0.546 0.613 11627541 183.0 0.641 0.806
8 436142577 266.5 23549921 132.2 0.730 0.821
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computed using the lower bound inherited from the parent node. From the table it is clear
that the use of Rule 4 at the top levels has an enormous effect on the subsequent evolution
of the tree. Note that using only Rule 2 increases the number of nodes on level 8 by a factor
of over 18. Moreover, the average gap for these level 8 nodes is approximately doubled,
suggesting that the number of nodes at deeper levels will continue to worsen substantially
compared to the solution run. We believe that the time to solve ste36a using only Rule 2
would be at least a factor of 100 higher than the time obtained here using Rules 4 and 2
together. Further evidence of the value of Rule 4 is provided by the results of a preliminary
solution run that used Rule 4 only on levels 0, 1, and 2 of the tree. This earlier run required
more than double the nodes (1.79 × 109) and time (435 hours) of the final solution run
reported here.

It is interesting to compare some characteristics of the B&B tree for ste36a with
the solution of nug30 obtained in [2]. For example, statistics like “Fthm” and “Elim”
are substantially better near the top of the tree for ste36a than for nug30. On the other
hand, the node distribution for ste36a, as shown in Figure 17.4, is much “flatter” than
the corresponding distribution for nug30. Although the peak number of nodes is modest
compared to the solution of nug30, there are 14 levels (8–21) where the number of nodes
is within a factor of 5 of the peak number (8.7 × 107, on level 17). In the B&B tree for the
nug30 problem only 6 levels had node counts within a factor of 5 of the peak (2.66 × 109,
on level 10). We conclude that, while the use of the GLB with strong branching is effective
in limiting the growth of the B&B tree for ste36a, there is still room for improvement in the
overall time required to solve the problem.

After this chapter was written, we learned of a previously unreleased technical report
by M. Nyström [35] that describes the solution of the ste36b/c problems. Nyström used
a distributed B&B algorithm based on the GLB, implemented on twenty-two 200 MHz
Pentium Pro CPUs. The serial time to solve the ste36b/c instances on one of these CPUs
is estimated to be approximately 60 days and 200 days, respectively. (The time for ste36c
is substantially higher because this problem was solved using an initial incumbent value of
+∞.)
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