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THE VOLUMETRIC BARRIER FOR SEMIDEFINITE
PROGRAMMING

KURT M. ANSTREICHER

We consider the volumetric barrier for semide2nite programming, or “generalized” volumetric
barrier, as introduced by Nesterov and Nemirovskii. We extend several fundamental properties
of the volumetric barrier for a polyhedral set to the semide2nite case. Our analysis facilitates a
simpli2ed proof of self-concordance for the semide2nite volumetric barrier, as well as for the
combined volumetric-logarithmic barrier for semide2nite programming. For both of these barriers
we obtain self-concordance parameters equal to those previously shown to hold in the polyhedral
case.

1. Introduction. This paper concerns the volumetric barrier for semide2nite pro-
gramming. The volumetric barrier for a polyhedral set P= {x |Ax≥ c}, where A is an
m× n matrix, was introduced by Vaidya (1996). Vaidya used the volumetric barrier in the
construction of a cutting plane algorithm for convex programming; see also Anstreicher
(1997b, 1999a, 1999b). Subsequently Vaidya and Atkinson (1993) (see also Anstreicher
1997a) used a hybrid combination of the volumetric and logarithmic barriers for P to
construct an O(m1=4n1=4L)-iteration algorithm for a linear programming problem de2ned
over P, with integer data of total bit size L. For m� n this complexity compares fa-
vorably with O(

√
mL), the best known iteration complexity for methods based on the

logarithmic barrier.
Nesterov and Nemirovskii (1994, §5:5) proved self-concordance results for the volumet-

ric, and combined volumetric-logarithmic, barriers that are consistent with the algorithm
complexities obtained in Vaidya and Atkinson (1993). In fact Nesterov and Nemirovskii
(1994) obtain results for extensions of the volumetric and combined barriers to a set of the
form S= {x |∑n

i=1 xiAi	C}, where Ai; i=1; : : : ; n and C are m×m symmetric matrices,
and 	 denotes the semide2nite ordering. The set S is a strict generalization of P, since
P can be represented by using diagonal matrices in the de2nition of S. Optimization
over a set of the form S is now usually referred to as semide�nite programming; see
for example Alizadeh (1995) or Vandenberghe and Boyd (1996). It is well known (see
Nesterov and Nemirovskii 1994) that an extension of the logarithmic barrier to S obtains
an m-self-concordant barrier. In Nesterov and Nemirovskii (1994) it is also shown that
semide2nite extensions of the volumetric, and combined volumetric-logarithmic barrier are
O(

√
mn), and O(

√
mn), self-concordant barriers for S, respectively.

The self-concordance proofs in Nesterov and Nemirovskii (1994, §5:5) are extremely
technical, and do not obtain the constants that would be needed to actually implement
algorithms using the barriers. Simpli2ed proofs of self-concordance for the volumetric and
combined barriers for P are obtained in Anstreicher (1997a). In particular, it is shown
these barriers are 225

√
mn, and 450

√
mn self-concordant barriers for P, respectively.
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The proofs of these self-concordance results use a number of fundamental properties of
the volumetric barrier established in Anstreicher (1996, 1997a). Unfortunately, however,
the analysis of Anstreicher (1997a) does not apply to the more general semide2nite con-
straint de2ning S, as considered in Nesterov and Nemirovskii (1994). With the current
activity in semide2nite programming the extension of results for the volumetric and com-
bined barriers to S is of some interest. For example, in Nesterov and Nemirovskii (1994,
p. 204) it is argued that with a large number of low-rank quadratic constraints, the com-
bined volumetric-logarithmic barrier applied to a semide2nite formulation obtains a lower
complexity than the usual approach of applying the logarithmic barrier directly to the
quadratic constraints.
The purpose of this paper is to extend the analysis of the volumetric and combined

barriers in Anstreicher (1996, 1997a) to the semide2nite case. This analysis is by
necessity somewhat complex, but in the end we obtain semide2nite generalizations for
virtually all of the fundamental results in Anstreicher (1996, 1997a). These
include:
• The semide2nite generalization of the matrix Q(x) having Q(x)�∇2V (x)� 3Q(x),

where V (·) is the volumetric barrier.
• The semide2nite generalization of the matrix H, which in the polyhedral case is the

diagonal matrix H=Diag(�). Representations of ∇V (x) and Q(x) in terms of H clearly
show the relationship with the polyhedral case (see Table 1, at the end of §4).
• Semide2nite generalizations of fundamental inequalities between Q(x) and the Hessian

of the logarithmic barrier (see Theorems 4.2 and 4.3).
• Self-concordance results for the volumetric, and combined, barriers identical to those

obtained for the polyhedral case. In particular, we prove that these barriers are 225
√
mn,

and 450
√
mn self-concordant barriers for S, respectively.

The fact that we obtain self-concordance results identical to those previously shown
to hold in the polyhedral case is somewhat surprising, because one important element
in the analysis here is signi2cantly diIerent than in Anstreicher (1997a). In Anstreicher
(1997a), self-concordance is established by proving a relative Lipschitz condition on the
Hessian ∇2V (·). This proof is based on Shur product inequalities, and an application of
the Gershgorin circle theorem. The use of the Lipschitz condition is attractive because it
eliminates the need to explicitly consider the third directional derivatives of the volumetric
barrier. We have been unable to extend this proof technique to the semide2nite case,
however, and consequently here we explicitly consider the third directional derivatives
of V (·). The proof of the main result concerning these third derivatives (Theorem 5.1)
is based on properties of Kronecker products. Despite the fact that on this point the
analytical techniques used here and in Anstreicher (1997a) are quite diIerent, the 2nal
self-concordance results are identical.
An outline of the paper follows. In the next section we brieJy consider some math-

ematical preliminaries. The most signi2cant of these are well-known properties of the
Kronecker product, which we use extensively throughout the paper. In §3 we de2ne the
logarithmic, volumetric, and combined barriers for S, and state the main self-concordance
theorems. The proofs of these results are deferred until §5. Section 4 considers a detailed
analysis of the volumetric barrier for S. We 2rst obtain Kronecker product representa-
tions for the gradient and Hessian of V (·), which are then used to prove a variety of
results generalizing those in Anstreicher (1996, 1997a). Later in the section the matrix H
is de2ned, and alternative representations of ∇V (x) and Q(x) in terms of H are obtained
(see Table 1). Section 5 considers the proofs of self-concordance for the volumetric and
combined barriers. The main work here is to obtain Kronecker product representations for
the third directional derivatives of V (·), and then prove a result (Theorem 5.1) relating
the third derivatives to Q(x).
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2. Preliminaries. In this section we brieJy consider several points of linear algebra
and matrix calculus that will be required in the sequel. To begin, let A and B be m×m
matrices. We use tr(A) to denote the trace of A, and A ·B to denote the matrix inner
product

A · B=
∑
i; j

aijbij = tr(ABT ):

Let �A ∈�m denote the vector of singular values of A, that is, the positive square roots of
the eigenvalues of ATA. The Frobenius norm of A is then ‖A‖=(tr(ATA))1=2 = ‖�A‖, and
the spectral norm is |A|= ‖�A‖∞. We say that a matrix A is positive semide�nite (psd) if
A is symmetric, and has all nonnegative eigenvalues. We use 	 to denote the semide2nite
ordering for symmetric matrices: A	B if A − B is psd. For a vector v∈�n, Diag(v) is
the n× n diagonal matrix with Diag(v)ii= vi for each i. We will make frequent use of the
following elementary properties of tr(·). Parts (1) and (3) of the following proposition
are well known, and parts (2) and (4) follow easily from (1) and (3), respectively.

PROPOSITION 2.1. Let A and B be m×m matrices. Then
(1) tr(AB)= tr(BA);
(2) If A is symmetric; then tr(AB)= tr(ABT );
(3) If A and B are psd; then A ·B ≥ 0; and A ·B=0 if and only if AB=0:
(4) If A	 0 and B	C; then A ·B ≥ A ·C.

Let A and B be m× n; and k × l; matrices, respectively. The Kronecker product of A
and B, denoted A⊗B; is the mk × nl block matrix whose i; j block is aijB; i=1; : : : ; m;
j=1; : : : ; n. For our purposes it is also very convenient to de2ne a “symmetrized”
Kronecker product:

A⊗S B=
1
2
(A⊗B+ B⊗A):

For an m× n matrix A, vec(A)∈�mn is the vector formed by “stacking” the columns of A
one atop another, in the natural order. The following properties of the Kronecker product
are all well known; see for example Horn and Johnson (1991), except for (2), which
follows immediately from (1) and the de2nition of ⊗S .

PROPOSITION 2.2. Let A; B; C; and D be conforming matrices. Then
(1) (A⊗B)(C ⊗D)=AC ⊗BD;
(2) (A⊗SB)(C ⊗S D)= 1

2 (AC ⊗S BD + AD⊗S BC);
(3) (A⊗B)T =AT ⊗BT ;
(4) If A and B are nonsingular; then A⊗B is nonsingular; and (A⊗B)−1 =A−1⊗B−1;
(5) vec(ABC)= (CT ⊗A)vec(B);
(6) If A and B are psd; then A⊗B is psd.

Lastly we consider two simple matrix calculus results. Let X be a nonsingular matrix
with det(X )¿0. Then (see for example Graham 1981, p. 75),

@
@xij

ln det(X )= [X−1]ji;(1)

and also (see for example Graham 1981, p. 64),

@
@xij

X−1 = − X−1eieTj X
−1;(2)

where ei denotes the ith elementary vector.
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3. Main results. Let G be a closed convex subset of �n, and let F(·) be a C3, convex
mapping from Int(G) to �; where Int(·) denotes interior. Then (Nesterov and Nemirovskii
1994) F(·) is called a #-self-concordant barrier for G if F(·) tends to in2nity for any
sequence approaching a boundary point of G,

|D3F(x)[#; #; #]| ≤ 2(D2F(x)[#; #])3=2

for every x∈ Int(G) and #∈�n, and
sup

x∈Int(G)
{∇F(x)∇2F(x)−1∇F(x)T} ≤ #:

As shown by Nesterov and Nemirovskii (1994, Theorem 3.2.1), the existence of a #-
self-concordant barrier for G implies that a linear, or convex quadratic, objective can
be minimized on G to within a tolerance $ of optimality using O(

√
#|ln $|) iterations of

Newton’s method.
Consider a set S⊂�n of the form

S=

{
x | S(x)=

n∑
i=1

xiAi − C 	 0
}
;

where Ai; i=1; : : : ; n and C are m×m symmetric matrices. We assume throughout that
the matrices {Ai} are linearly independent, and that a point x with S(x)� 0 exists.
It is then easy to show that Int(S)= {x | S(x)� 0}. The logarithmic barrier for S is
the function

f(x)= − ln det(S(x));
de2ned on the interior of S. As shown by Nesterov and Nemirovskii (1994,
Proposition 5.4.5). f(·) is an m-self-concordant barrier for S; implying the existence
of polynomial-time interior-point algorithms for linear, and convex quadratic, semide2nite
programming.
The volumetric barrier V (·) for S, as de2ned in Nesterov and Nemirovskii (1994,

§5:5), is the function

V (x)=
1
2
ln det(∇2f(x)):

The 2rst main result of the paper is the following improved characterization of the self-
concordance of V (·).

THEOREM 3.1. Let S= {x | S(x)	 0}; where S(x)= ∑n
i=1 xiAi−C; and each Ai; and C;

are m×m symmetric matrices. Then 225m1=2V (·) is a #-self-concordant barrier for S;
for #=225m1=2n:

Theorem 3.1 generalizes a result for the polyhedral volumetric barrier (Anstreicher
1997a, Theorem 5.1), and provides an alternative to the semide2nite self-concordance re-
sult of Nesterov and Nemirovskii (1994, Theorem 5.5.1). It is worthwhile to note that
in fact the analysis in Nesterov and Nemirovskii (1994, §5:5) does not apply directly
to the barrier V (·) for S as given here, because Nesterov and Nemirovskii assume that
the “right-hand side” matrix C is zero. In practice, this assumption can be satis2ed by
extending S to the cone

K=

{
(x0; x) |

n∑
i=1

xiAi − x0C 	 0
}
;
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and then intersecting K with the linear constraint x0 = 1 to recover S. The analysis in
Nesterov and Nemirovskii (1994) would then be applied to the volumetric barrier V̂ (·)
for K. The advantage of working with K is that some general results of Nesterov and
Nemirovskii can then be applied, because V̂ (·) is (n + 1)-logarithmically homogenous;
see Nesterov and Nemirovskii (1994, §2:3:3). (For example Theorem 4.4, required in
the analysis of §5, could be replaced by the fact that ∇V̂ (x)∇2V̂ (x)−1∇V̂ (x)T = n +
1, from Nesterov and Nemirovskii 1994, Proposition 2:3:4.) Our analysis shows, how-
ever, that the homogeneity assumption used in Nesterov and Nemirovskii (1994)
is not needed to prove self-concordance for the semide2nite volumetric
barrier.
The combined volumetric-logarithmic barrier for S is the function

V&(x)=V (x) + &f(x);

where V (·) is the volumetric barrier, f(·) is the logarithmic barrier, and & is a positive
scalar. The combined barrier was introduced for polyhedral sets in Vaidya and Atkinson
(1993), and extended to semide2nite constraints in Nesterov and Nemirovskii (1994). Our
main result on the self-concordance of V&(·) is the following:

THEOREM 3.2. Let S= {x | S(x)	 0}; where S(x)= ∑n
i=1 xiAi−C; and each Ai; and C;

are m×m symmetric matrices. Assume that n¡m; and let & = (n − 1)=(m − 1). Then
225(m=n)1=2V&(·) is a #-self-concordant barrier for S; for #=450m1=2n1=2.

Theorems 3.1 and 3.2 imply that if m� n, then the self-concordance parameter # for
the volumetric or combined barrier for S (particularly the latter) can be lower than m,
the parameter for the logarithmic barrier. It follows that for m� n the complexity of
interior-point algorithms for the minimization of a linear, or convex quadratic, function
over S may be improved by utilizing V (·) or V&(·) in place of f(·).

4. The volumetric barrier. Let f(·) be the logarithmic barrier for S, as de2ned in
the previous section. It is well known (see for example Vandenberghe and Boyd 1996)
that the 2rst and second partial derivatives of f(·) at an interior point of S are given by:

@f(x)
@xi

=−tr(S−1Ai); @2f(x)
@xi@xj

= tr(S−1AiS−1Aj);

where throughout we use S = S(x) whenever possible to reduce notation. Let A be the
m2× n matrix whose ith column is vec(Ai). Since

@2f(x)
@xi@xj

= vec(Ai)T vec(S−1AjS−1)= vec(Ai)T [S−1 ⊗ S−1]vec(Aj);

where the second equality uses Proposition 2.2(5), the Hessian matrix H =H (x)=
∇2f(x) can be represented in the form (see Alizadeh 1995)

H =AT [S−1 ⊗ S−1]A:(3)

Note that H =H (x) is positive de2nite under the assumptions that S = S(x)� 0, and that
the matrices {Ai} are linearly independent.
Our 2rst goal in this section is to obtain Kronecker product representations for the

gradient and Hessian of V (·). To start, it is helpful to compute
@S(x)−1

@xk
=
∑
i; j

@S(x)−1

@[S(x)]ij

@[S(x)]ij
@xk

= −
∑
i; j

S−1eieTj S
−1[Ak ]ij = − S−1AkS−1;(4)
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where the second equality uses (2). In addition, using (4) and the de2nitions of ⊗ and
⊗S , it is easy to see that

@
@xk

(S(x)−1 ⊗ S(x)−1)=−2S−1⊗S S−1AkS−1:(5)

Now applying the chain rule, (1), and (5), we 2nd that

@V (x)
@xi

=
1
2
H−1(x) · @H (x)

@xi
(6)

=
1
2
H−1(x) ·AT

[
@
@xi
(S(x)−1 ⊗ S(x)−1)

]
A

= −H−1 ·AT [S−1 ⊗S S−1AiS−1]A

= −(AH−1AT ) · (S−1AiS−1 ⊗S S−1)

= −P · (S−1=2AiS−1=2 ⊗S I);(7)

where the last equality uses Proposition 2.2(1), S−1=2 is the unique positive de2nite matrix
having (S−1=2)2 = S−1, and

P=P(S)= [S−1=2 ⊗ S−1=2]A(AT [S−1 ⊗ S−1]A)−1AT [S−1=2 ⊗ S−1=2](8)

is the orthogonal projection onto the range of [S−1=2⊗S−1=2]A. Note that the jth column
of [S−1=2 ⊗ S−1=2]A is exactly

[S−1=2 ⊗ S−1=2]vec(Aj)= vec(S−1=2AjS−1=2);

using Proposition 2.2(5). It follows that P is a representation, as an m2×m2 matrix, of
the projection onto the subspace of Rm×m spanned by {S−1=2AjS−1=2; j=1; : : : ; n}.
We will next compute the second partial derivatives of V (·). To start, using (2) and

(5), we obtain

@H (x)−1

@xk
=
∑
i; j

@H (x)−1

@[H (x)]ij

@[H (x)]ij
@xk

= 2
∑
i; j

(H−1eieTj H
−1)vec(Ai)T [S−1 ⊗S S−1AkS−1]vec(Aj)

= 2H−1AT [S−1 ⊗S S−1AkS−1]AH−1:(9)

Also, using (4) and the de2nition of ⊗S , we have

@
@xj
(S(x)−1AiS(x)−1 ⊗S S(x)−1)

=
(
@
@xj
S(x)−1AiS(x)−1

)
⊗S S(x)−1 + S(x)−1AiS(x)−1 ⊗S

(
@
@xj
S(x)−1

)

= −(S−1AjS−1AiS−1 + S−1AiS−1AjS−1)⊗S S−1 − S−1AiS−1 ⊗S S−1AjS−1:(10)

Combining (6), (9), and (10), and using Proposition 2.1(2), we obtain

∇2V (x)= 2Q(x) + R(x)− 2T (x);(11)
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where Q=Q(x), R=R(x), and T =T (x) are the n× n matrices having
Qij =AH−1AT · (S−1AiS−1AjS−1 ⊗S S−1);(12)

Rij =AH−1AT · (S−1AiS−1 ⊗S S−1AjS−1);

Tij =AH−1AT · (S−1AiS−1 ⊗S S−1)AH−1AT (S−1AjS−1 ⊗S S−1):

THEOREM 4.1. For any x having S(x)� 0; 0�Q(x)�∇2V (x)� 3Q(x).

PROOF. Let #∈�n; # �=0. Then

#TQ# =
∑
i; j

Qij#i#j =AH−1AT · (S−1BS−1BS−1 ⊗S S−1) = P · ( RB2⊗S I);(13)

where B=B(#)=
∑n

i=1 #iAi, and RB= S−1=2BS−1=2. Similarly

#TR# =AH−1AT · (S−1BS−1⊗ S−1BS−1)=P · ( RB⊗ RB);(14)

#TT# =AH−1AT · (S−1BS−1⊗S S−1)AH−1AT (S−1BS−1⊗S S−1)(15)

= P · ( RB⊗S I)P( RB⊗S I):(16)

Note that from Proposition 2.1(3) and Proposition 2.2(6) we immediately have #TQ#≥ 0
and #TT#≥ 0, since I , P and RB2 are all psd. Since # is arbitrary, it follows that Q	 0,
T 	 0. In addition, the fact that P is a projection implies that

( RB⊗S I)P( RB⊗S I)� ( RB⊗S I)( RB⊗S I)=
1
2
([ RB2⊗S I ] + [ RB⊗ RB]);(17)

where the last equality uses Proposition 2.2(2). Applying Proposition 2.1(4), we conclude
that

P · ( RB⊗S I)P( RB⊗S I)≤ 1
2
P · ([ RB2⊗S I ] + [ RB⊗ RB]);

which is exactly #TT#≤ (1=2)#T (Q + R)#. Since # is arbitrary, we have shown that
T � (1=2)(Q + R), which together with (11), Q	 0, and T 	 0 implies that

0�Q(x)�∇2V (x)� 2Q(x) + R(x):
To complete the proof we must show that R(x)�Q(x). Let ,i, i= i; : : : ; m be orthonormal
eigenvectors of RB, with corresponding eigenvalues -i, i=1; : : : ; m. Then (see Horn and
Johnson 1991, Theorem 4:4:5) RB2⊗S I has orthonormal eigenvectors ,i⊗ ,j, i; j=1; : : : ; m,
with corresponding eigenvalues (1=2)(-2i + -2j ), while (see Horn and Johnson 1991,
Theorem 4:2:12) RB⊗ RB has the same eigenvectors ,i⊗ ,j, with corresponding eigenvalues
-i-j. It then follows from (-i − -j)2≥ 0 for each i; j that

RB2⊗S I 	 RB⊗ RB;(18)

and Proposition 2.1(4) then implies that P · ( RB2⊗S I)≥P · ( RB⊗ RB), which is exactly
#TQ#≥ #TR#. Since # is arbitrary we have shown that Q	R, as required.
Theorem 4.1 generalizes a similar result (Anstreicher 1996, Theorem A.4) for the

polyhedral volumetric barrier. It follows from Theorem 4.1 that V (·) is convex on the
interior of S. In the next theorem we demonstrate that in fact V (·) is strictly convex.
Theorem 4.2 is also a direct extension of a result for the polyhedral volumetric barrier;
see Anstreicher (1996, Theorem A.5).
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THEOREM 4.2. Let x have S(x)� 0. Then Q(x)	 (1=m)H (x).

PROOF. Let #∈�n, # �=0. Then
#TH#= #TAT (S−1⊗ S−1)A#= ‖(S−1=2⊗ S−1=2)A#‖2:

Let B=B(#)=
∑n

i=1 #iAi, and RB= S−1=2BS−1=2. Since A#= vec(B), we have

#TH#= ‖(S−1=2⊗ S−1=2)vec(B)‖2 = ‖vec( RB)‖2 = ‖ RB‖2 = ‖-‖2;(19)

where -i, i=1; : : : ; m are the eigenvalues of RB, with corresponding orthonormal eigen-
vectors ,i, i=1; : : : ; m. As described in the proof of Theorem 4.1, RB2⊗S I then has a
full set of orthonormal eigenvectors ,i⊗ ,j, i; j=1; : : : ; m, with corresponding eigenvalues
(1=2)(-2i + -

2
j ). It follows from (13) that

#TQ# = P · 12
∑
i; j

(-2i + -
2
j )(,i⊗ ,j)(,i⊗ ,j)T(20)

= 1
2

∑
i; j

(-2i + -
2
j )(,i⊗ ,j)TP(,i⊗ ,j)

≥
∑
i

-2i (,i⊗ ,i)TP(,i⊗ ,i):(21)

On the other hand, P vec( RB)= vec( RB) implies that

‖-‖ = ‖P vec( RB)‖=
∣∣∣∣∣
∣∣∣∣∣P vec

(
m∑
i=1

-i,i,Ti

)∣∣∣∣∣
∣∣∣∣∣ =

∥∥∥∥∥P
m∑
i=1

-i(,i⊗ ,i)
∥∥∥∥∥ ≤

m∑
i=1

|-i|vi;(22)

where vi= ‖P(,i⊗ ,i)‖. Then (21) and (22) together imply that #TQ#≥
∑m

i=1 v
2
i -
2
i , and∑m

i=1 vi|-i| ≥ ‖-‖, from which it follows that #TQ#≥ (1=m)‖-‖2 = (1=m)#TH#.
For a given #∈�n, and RB= S−1=2(

∑n
i=1#iAi)S

−1=2, the conclusion of Theorem 4.2 is
that

#TQ#≥ 1
m
‖ RB‖2:(23)

A strengthening of (23), using | RB| in place of ‖ RB‖, is a key element in our analysis of the
self-concordance of V (·), in the next section. The next theorem gives a remarkably direct
generalization of a result for the polyhedral volumetric barrier; see Anstreicher (1996,
Proposition 2.3).

THEOREM 4.3. Let x have S = S(x)� 0; #∈�n; and RB= S−1=2(
∑n

i=1#iAi)S
−1=2. Then

#TQ(x)#≥ (2=[1 +√
m])| RB|2.

PROOF. Let ,i, i=1; : : : ; m be orthonormal eigenvectors of RB, with corresponding eigen-
values -i. Then P vec( RB)= vec( RB) can be written P

∑m
i=1 -i(,i⊗ ,i)=

∑m
i=1 -i(,i⊗ ,i); and

for any j we have

|-j|=
∣∣∣∣∣(,j ⊗ ,j)T

(
P

m∑
i=1

-i(,i⊗ ,i)
)∣∣∣∣∣ ≤ vj

(
m∑
i=1

|-i|vi
)
;(24)

where vi= ‖P(,i⊗ ,i)‖. Without loss of generality (scaling # as needed, and re-ordering
indices) we may assume that ‖-‖∞= |-1|=1. Then (24) implies that

v21 + v1
m∑
i=2

|-i|vi≥ 1:
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Since #TQ#≥ ∑m
i=1 -

2
i v
2
i , from (21), we are naturally led to consider the optimization

problem

min
v
v21 +

m∑
i=2

-2i v
2
i ;

m∑
i=2

|-i|vi≥ 1
v1

− v1;(25)

0≤ v≤ e:

For 2xed 0¡v1≤ 1; the constraint in (25) implies that
m∑
i=2

-2i v
2
i ≥

1
m− 1

(
1
v1

− v1
)2

=
1

m− 1
(
1
v21

− 2 + v21
)
;

so the objective value in (25) can be no lower than

v21 +
1

m− 1
(
1
v21

− 2 + v21
)
=

1
m− 1

(
mv21 +

1
v21

− 2
)
:(26)

A straightforward diIerentiation shows that the minimal value for (26) occurs when v21 =
1=
√
m, and the value is then

1
m− 1

(
mv21 +

1
v21

− 2
)
=

1
m− 1(2

√
m− 2) = 2

m− 1(
√
m− 1)= 2√

m+ 1
:

We have thus shown that if | RB|=1; then #TQ#≥ 2=(√m+ 1).
Next we will obtain alternative representations of ∇V (x) and Q(x) that emphasize the

connection between the semide2nite volumetric barrier and the volumetric barrier for a
polyhedral set. For 2xed x with S = S(x)� 0, let RAi= S−1=2AiS−1=2, i=1; : : : ; n. Let Ui,
i=1; : : : ; n be symmetric matrices having ‖Ui‖=1 for all i, and Ui ·Uj =0, i �= j, such
that the linear span of {Ui; i=1; : : : ; n} is equal to the span of { RAi; i=1; : : : ; n}. (Such
{Ui} may be obtained by applying a Gram-Schmidt procedure to { RAi}.) Let U be the
m2 × n matrix whose ith column is vec(Ui), and let H=

∑n
k=1 U

2
k . Then P=P(S), from

(8), can be written in the form P=UUT . It follows, from (7), that

@V (x)
@xi

= −P · ( RAi⊗S I)

= −UUT · ( RAi⊗S I)

= −tr(UT ( RAi⊗S I)U )

= −1
2

n∑
k=1

vec(Uk)T [( RAi⊗ I) + (I ⊗ RAi)]vec(Uk)

= −1
2

n∑
k=1

vec(Uk)T vec(Uk RAi + RAiUk)

= −1
2

n∑
k=1

Uk · (Uk RAi + RAiUk)
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= − RAi ·
(

n∑
k=1

U 2
k

)

= − RAi ·H:(27)

Similarly, from (12) we have

Q(x)ij = P · ( RAi RAj ⊗S I)

= tr(UT ( RAi RAj ⊗S I)U )

=
n∑
k=1

vec(Uk)T ( RAi RAj ⊗S I)vec(Uk)

=
1
2

n∑
k=1

vec(Uk)T vec( RAi RAjUk + Uk RAi RAj)

=
1
2

n∑
k=1

Uk · ( RAi RAjUk + Uk RAi RAj)

=
1
2

n∑
k=1

tr(Uk( RAj RAiUk + Uk RAj RAi))

=
n∑
k=1

tr( RAiU 2
k
RAj)

= tr( RAiH RAj):(28)

The characterizations of ∇V (x) and Q(x) given in (27) and (28) are very convenient
for the proof of the following theorem, which will be required in the analysis of self-
concordance in the next section.

THEOREM 4.4. Let x have S(x)� 0. Then ∇V (x)Q(x)−1∇V (x)T≤n.

PROOF. From (28) we have

Q(x)ij = vec( RAi)T vec(H RAj)

= vec( RAi)T (I ⊗H)vec( RAj);
using Proposition 2.2(5). Letting RA be the m2 × n matrix whose ith column is vec( RAi),
we can then write

Q(x)= RAT (I ⊗H) RA:(29)

In addition, it follows from (27) that

∇V (x)T =− RAT vec(H):(30)

Combining (29) and (30), we obtain

∇V (x)[Q(x)]−1∇V (x)T

= vec(H)T RA( RAT (I ⊗H) RA)−1 RAT vec(H)

= vec(H1=2)T (I ⊗H1=2) RA( RAT (I ⊗H) RA)−1 RAT (I ⊗H1=2)vec(H1=2)
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TABLE 1. Comparison of logarithmic and volumetric barriers

Polyhedral Semide2nite

Logarithmic ∇fi = RaTi e ∇fi = tr( RAi)
Hij = RaTi Raj Hij = tr( RAi RAj)

Volumetric ∇Vi = RaTi � ∇Vi = tr( RAiH)
Qij = RaTi H Raj Qij = tr( RAiH RAj)

≤ vec(H1=2)T vec(H1=2)
= tr(H)

= n;

because H=
∑n

k=1 U
2
k , and tr(U

2
k )=Uk ·Uk =1 for each k, by construction.

One 2nal point concerning the matrix H is the issue of uniqueness, for a given S = S(x).
Since H is de2ned above in terms of {Ui}, and the {Ui} are not unique, it is not at all
obvious that H is unique. We will now show that H is invariant to the choice of {Ui},
and is therefore unique. To see this, note that by de2nition

Hij =
n∑
k=1

(U 2
k )ij =

n∑
k=1

(Uk)Ti (Uk)j;(31)

where (Uk)i denotes the ith column of Uk (recall that each Uk is symmetric by construc-
tion). Let ei ∈�m denote the ith elementary vector, and let I be an m×m identity matrix.
By inspection [ei⊗ I ]TU is then the m× n matrix whose kth column is (Uk)i. It follows
from (31) that

Hij = tr(UT [ej ⊗ I ][ei⊗ I ]TU )= tr([ei⊗ I ]TUUT [ej ⊗ I ])= tr([ei⊗ I ]TP[ej ⊗ I ]);
where P is the projection from (8). Since P is uniquely determined by {Ai} and S = S(x),
H is also unique, as claimed.
In the following table we give a summary of 2rst and second order information for the

logarithmic and volumetric barriers, for polyhedral and semide2nite constraints. For the
polyhedral case we have s= s(x)=Ax−c, where A is an m×n matrix whose ith column is
ai. Given x with s= s(x)¿0, we let S =Diag(s), Rai= S−1ai, P=P(s)= S−1A(ATS−2A)−1

ATS−1, �∈�m be the vector whose components are those of the diagonal of P, and
H=Diag(�). For the volumetric barrier, in both the polyhedral and semide2nite cases, the
matrix Q satis2es Q(x)�∇2V (x)� 3Q(x). Note that, as should be the case, all formulas
for the semide2nite case also apply to the polyhedral case, with RAi=Diag( Rai).

5. Self-concordance. In this section we obtain proofs for the self-concordance results
in Theorems 3.1 and 3.2. We begin with an analysis of the third directional derivatives
of V (·). Let x have S(x)� 0, and #∈�n. Using (4), (9), and (13), we immediately
obtain

@
@xi
#TQ(x)# = 2AH−1AT [S−1AiS−1⊗S S−1]AH−1AT · [S−1BS−1BS−1⊗S S−1](32)

+AH−1AT · @
@xi
[S−1BS−1BS−1 ⊗S S−1];

where B=B(#)=
∑n

i=1 #iAi. Moreover, from (4) it is immediate that
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@
@xi
[S−1BS−1BS−1 ⊗S S−1]

= −(S−1AiS−1BS−1BS−1 + S−1BS−1AiS−1BS−1 + S−1BS−1BS−1AiS−1)⊗S S−1

−S−1BS−1BS−1 ⊗S S−1AiS−1:(33)

Combining (32) and (33), and using Proposition 2.1(2), we conclude that the 2rst direc-
tional derivative of #TQ(x)#, in the direction #, is given by

D1#TQ(x)#[#] =
n∑
i=1

#i
@
@xi
#TQ(x)#

= 2AH−1A · (S−1BS−1 ⊗S S−1)AH−1A(S−1BS−1BS−1 ⊗S S−1)

−3AH−1A · (S−1BS−1BS−1BS−1 ⊗S S−1)

−AH−1A · (S−1BS−1BS−1 ⊗S S−1BS−1)

= 2P · [ RB⊗S I ]P[ RB2 ⊗S I ]− 3P · [ RB3 ⊗S I ]− P · [ RB2 ⊗S RB];(34)

where RB= S−1=2BS−1=2, and P is de2ned as in (8). Very similar computations, using (14)
and (15), result in

D1#TR(x)#[#] = 2P · [ RB⊗S I ]P[ RB⊗ RB]− 4P · [ RB2 ⊗S RB];(35)

D1#TT (x)#[#] = 4P · [ RB⊗S I ]P[ RB⊗S I ]P[ RB⊗S I ]− 4P · [ RB⊗S I ]P[ RB2 ⊗S I ]

−2P · [ RB⊗S I ]P[ RB⊗ RB]:(36)

Combining (11) with (34), (35), and (36), we obtain the third directional derivative of
V (·):

D3V (x)[#; #; #] = 12P · [ RB⊗S I ]P[ RB2 ⊗S I ]− 6P · [ RB3 ⊗S I ]− 6P · [ RB2 ⊗S RB](37)

+ 6P · [ RB⊗S I ]P[ RB⊗ RB]− 8P · [ RB⊗S I ]P[ RB⊗S I ]P[ RB⊗S I ]:

THEOREM 5.1. Let x have S = S(x)� 0; #∈�n; and RB= S−1=2(
∑n

i=1 #iAi)S
−1=2. Then

|D3V (x)[#; #; #]| ≤ 30| RB|#TQ(x)#.

PROOF. Using the fact that

[ RB2 ⊗S I ][ RB⊗S I ] = 1
2 ([ RB

3 ⊗S I ] + [ RB2 ⊗S RB]);

from Proposition 2.2(2), (37) can be re-written as

D3V (x)[#; #; #] = P[ RB⊗S I ]P · (12[ RB2 ⊗S I ] + 6[ RB⊗ RB]− 8[ RB⊗S I ]P[ RB⊗S I ])(38)

−12P · [ RB2 ⊗S I ][ RB⊗S I ]:

We will analyze the two terms in (38) separately. First, from (17) we have

12[ RB2 ⊗S I ] + 6[ RB⊗ RB]− 8[ RB⊗S I ]P[ RB⊗S I ]	 8[ RB2 ⊗S I ] + 2[ RB⊗ RB]:

Using (18), and the similar relationship [ RB⊗ RB]	 − [ RB2 ⊗S I ], it follows that

6[ RB2 ⊗S I ]� 12[ RB2 ⊗S I ] + 6[ RB⊗ RB]− 8[ RB⊗S I ]P[ RB⊗S I ]� 18[ RB2 ⊗S I ]:(39)

Let -i; i=1; : : : ; m be the eigenvalues of RB. Then (see Horn and Johnson 1991,
Theorem 4:4:5) the eigenvalues of [ RB⊗S I ] are of the form (1=2)(-i + -j); i; j=1; : : : ; m;
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so

−| RB|I � [ RB⊗S I ]� | RB|I;
− | RB|P�P[ RB⊗S I ]P� | RB|P:(40)

Using (39), (40), the fact that [ RB2 ⊗S I ]	 0; and Proposition 2.1(4), we then obtain
|P[ RB⊗S I ]P · (12[ RB2 ⊗S I ] + 6[ RB⊗ RB]− 8[ RB⊗S I ]P[ RB⊗S I ])|(41)

≤ 18| RB|P · [ RB2 ⊗S I ]:

In addition, the fact that [ RB2 ⊗S I ] and [ RB⊗S I ] have the same eigenvectors implies that

−| RB|[ RB2 ⊗S I ]� [ RB2 ⊗S I ][ RB⊗S I ]� | RB|[ RB2 ⊗S I ];

and therefore

|P · [ RB2 ⊗S I ][ RB⊗S I ]| ≤ | RB|P · [ RB2 ⊗S I ]:(42)

The proof is completed by combining (38), (41), (42), and (13).
Using Theorem 5.1 we can now prove the 2rst main result of the paper, characterizing

the self-concordance of V (·).

PROOF OF THEOREM 3:1. The fact that V (x)→∞ as x approaches the boundary of S
follows from (3), and the fact that S(x) is singular on the boundary of S. Combining
the results of Theorems 4.3 and 5.1, we obtain

|D3V (x)[#; #; #]| ≤ 30
(
1 +

√
m

2

)1=2
(#TQ(x)#)3=2 ≤ 30m1=4(D2V (x)[#; #])3=2;(43)

using the fact that #TQ(x)# ≤ #T∇2V (x)#=D2V (x)[#; #], from Theorem 4.1. In addi-
tion, 0 ≺ Q(x)�∇2V (x) implies that ∇2V (x)−1�Q(x)−1 (see Horn and Johnson 1985,
Corollary 7:7:4), so Theorem 4.4 implies that

∇V (x)∇2V (x)−1∇V (x)T ≤ n:(44)

The proof is completed by noting the eIect on (43) and (44) when V (·) is multiplied by
the factor 225 m1=2.
Next we consider the self-concordance of the combined volumetric-logarithmic barrier

V&(·), as de2ned in §3. We begin with some well-known properties of the logarithmic
barrier f(·).

LEMMA 5.2. Let x have S = S(x)� 0; #∈�n; and RB= S−1=2(
∑n

i=1 #iAi)S
−1=2. Then

|D3f(x)[#; #; #]| ≤ 2| RB|#TH (x)#.

PROOF. From (3) and (5) we obtain

@Hij(x)
@xk

= −2vec(Ai)T [S−1AkS−1 ⊗S S−1]vec(Aj)

= −2vec(Ai)T (S−1=2⊗ S−1=2)[S−1=2AkS−1=2 ⊗S I ](S−1=2⊗ S−1=2)vec(Aj)
= −2vec( RAi)T [ RAk ⊗S I ]vec( RAj);(45)

where RAi= S−1=2AiS−1=2 for each i. It follows easily from (45) that

@#TH (x)#
@xk

= − 2vec( RB)T [ RAk ⊗S I ]vec( RB);
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and therefore

D3f(x)[#; #; #] =
m∑
k=1

#k
@#TH (x)#
@xk

= − 2vec( RB)T [ RB⊗S I ]vec( RB):

It is then immediate from the fact that | RB⊗S I |= | RB| (see the proof of Theorem 5.1) that

|D3f(x)[#; #; #]| ≤ 2| RB|vec( RB)T vec( RB)= 2| RB| ‖ RB‖2 = 2| RB|#TH (x)#;

where the 2nal equality uses (19).
It follows from Lemma 5.2, the fact that | RB| ≤ ‖ RB‖; and

∇f(x)(∇2f(x))−1∇f(x)T = vec(I)T RA ( RA T RA)−1 RA vec(I)≤ vec(I)T vec(I)=m;

that f(·) is an m-self-concordant barrier for S; as shown by Nesterov and Nemirovskii
(1994). Using Lemma 5.2 we immediately obtain the following generalization of Theo-
rem 5.1.

COROLLARY 5.3. Let x have S = S(x)� 0; #∈�n; and RB= S−1=2(∑n
i= 1 #iAi)S

−1=2. Then
|D3V&(x)[#; #; #]| ≤ 30| RB|#T (Q(x) + &H (x))#.

PROOF. Combining Theorem 5.1 and Lemma 5.2, we obtain

|D3V&(x)[#; #; #]| ≤ |D3V (x)[#; #; #]|+ &|D3f(x)[#; #; #]|
≤ 30| RB|#TQ(x)#+ 2&| RB|#TH (x)#
≤ 30| RB|#T (Q(x) + &H (x))#:

Next we require a generalization of Theorem 4.3 that applies with Q(x)+&H (x) in place
of Q(x). The following theorem obtains a direct extension of a result for the polyhedral
combined barrier (Anstreicher 1996, Theorem 3.3) to the semide2nite case. To prove the
theorem we will utilize the matrices {Uk}; as de2ned in §4, to reduce the theorem to a
problem already analyzed in the proof of Anstreicher (1996, Theorem 3.3).

THEOREM 5.4. Let x have S = S(x)� 0; #∈�n; and RB= S−1=2(
∑n

i=1 #iAi)S
−1=2. Then

#T (Q(x) + &H (x))# ≥ [2
√
&(m− 1) + 1=(1 +√

m)]| RB|2.

PROOF. Let ,i; i=1; : : : ; m be orthonormal eigenvectors of RB, with corresponding eigen-
values -i. By the de2nition of {Uk}; there is a vector R#∈�n such that

RB=
m∑
i=1

-i,i,Ti =
n∑
k=1

R#kUk ;(46)

and therefore ‖ RB‖= ‖-‖= ‖ R#‖. It follows from (46) that for each i=1; : : : ; m;

,Ti RB,i= -i=
n∑
k=1

R#k,
T
i Uk,i;

and therefore -=W R#; where W is the m× n matrix with

wik = ,Ti Uk,i=Uk · ,i,Ti =(,i ⊗ ,i)T vec(Uk):(47)
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Let U be the m2×n matrix whose kth column is vec(Uk); and let V be the m2×m matrix
whose ith column is ,i ⊗ ,i. From (47) we can then write W =VTU . Now let wi denote
the ith row of W . Then

‖wi‖2 = (WWT )ii=(VTUUTV )ii=(,i ⊗ ,i)TP(,i ⊗ ,i)= ‖P(,i ⊗ ,i)‖2;(48)

where P is the projection matrix from (8). Using (19), (21), and (48) we then have

#T (Q(x) + &H (x))# ≥
m∑
i=1

-2i ‖P(,i ⊗ ,i)‖2 + &‖-‖2 =
m∑
i=1

(wTi R#)
2‖wi‖2 + &‖ R#‖2:

Moreover it is clear that
∑m

i=1(w
T
i
R#)2 = ‖-‖2 = ‖ R#‖2; and also | RB|= ‖-‖∞= ‖W R#‖∞.

We are now exactly in the structure of the proof of Anstreicher (1996, Theorem 3.3),
with U of that proof replaced by the matrix W . In that proof it is shown that the solution
objective value of the problem

min
W; R#

&‖ R#‖2 +
m∑
i=1

(wTi R#)
2‖wi‖2;

m∑
i=1

(wTi R#)
2 = ‖ R#‖2;

‖W R#‖∞=1;

can be no lower than

2
√
&(m− 1) + 1
1 +

√
m

:

It follows that #T (Q(x) + &H (x))# ≥ [2
√
&(m− 1) + 1=(1 +√

m)]| RB|2; as claimed.
The 2nal ingredient needed to prove the self-concordance of V&(·) is the following

simple generalization of Theorem 4.4.

THEOREM 5.5. Let x have S(x)� 0. Then ∇V&(x)[Q(x) + &H (x)]−1∇V&(x)T ≤ n+ &m.

PROOF. From the representations in Table 1 we easily obtain

∇V&(x)T =− RA T vec(H + &I);

Q(x) + &H (x) = RA T [I ⊗ (H + &I)] RA:

Let H&=H+ &I . It follows that

∇V&(x)[Q(x) + &H (x)]−1∇V&(x)T

= vec(H1=2& )[I ⊗ H1=2& ] RA ( RA
T
[I ⊗ H&] RA)−1 RA T [I ⊗ H1=2& ]vec(H1=2& )

≤ vec(H1=2& )T vec(H1=2& )
= tr(H&)

= n+ &m:

Using the above results we can now prove the second main result of the paper, char-
acterizing the self-concordance of the combined volumetric-logarithmic barrier for S.
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PROOF OF THEOREM 3:2. Combining the results of Corollary 5.3 and Theorem 5.4, with
&=(n− 1)=(m− 1); we obtain

|D3V&(x)[#; #; #]| ≤ 30
(
1 +

√
m

2
√
n

)1=2
(#T (Q(x) + &H (x))#)3=2(49)

≤ 30
(m
n

)1=4
(D2V&(x)[#; #])3=2;

using the fact that #TQ(x)#≤ #T∇2V (x)#=D2V (x)[#; #]; from Theorem 4.1. In addition,
0 ≺ Q(x) � ∇2V (x) implies that ∇2V&(x)−1 � (Q(x) + &H (x))−1 (see Horn and Johnson
1985, Corollary 7.7.4), so Theorem 5.5 implies that

∇V&(x)∇2V&(x)−1∇V&(x)T ≤ n+ m(n− 1)=(m− 1)¡2n:(50)

The proof is completed by noting the eIect on (49) and (50) when V&(·) is multiplied by
the factor 225(m=n)1=2.
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