
Noname manuscript No.
(will be inserted by the editor)

Quadratic Optimization with Switching Variables:
The Convex Hull for n = 2

Kurt M. Anstreicher · Samuel Burer

Received: date / Accepted: date

Abstract We consider quadratic optimization in variables (x,y) where 0≤ x≤ y, and
y ∈ {0,1}n. Such binary y are commonly referred to as indicator or switching vari-
ables and occur commonly in applications. One approach to such problems is based
on representing or approximating the convex hull of the set {(x,xxT ,yyT ) : 0 ≤ x ≤
y ∈ {0,1}n}. A representation for the case n = 1 is known and has been widely used.
We give an exact representation for the case n= 2 by starting with a disjunctive repre-
sentation for the convex hull and then eliminating auxiliary variables and constraints
that do not change the projection onto the original variables. An alternative derivation
for this representation leads to an appealing conjecture for a simplified representation
of the convex hull for n = 2 when the product term y1y2 is ignored.
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1 Introduction

This paper concerns quadratic optimization in variables x∈Rn and y∈ {0,1}n, where
0 ≤ x ≤ y. The y variables are refered to as indicator or switching variables and
occur frequently in applications, including electrical power production [9,11,13],
constrained portfolio optimization [9,10,19], nonlinear machine scheduling [1] and
chemical pooling [7]. In the formulations of these problems the objective function is
typically separable in x and y and cross-terms yiy j with i 6= j may or may not appear.
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One approach for such problems is to consider symmetric matrix variables X and
Y that replace the rank-1 matrices xxT and yyT , respectively. Using such variables,
an objective of the form cT x+ xT Qx+ yT Dy can be replaced by the linear function
cT x+Q•X +D•Y , where (x,X ,Y ) should then be in the set

H := conv{(x,xxT ,yyT ) : 0≤ x≤ y ∈ {0,1}n}.

The problem is then to represent H in a manner that is amenable to computation,
e.g., with a polynomial-size outer formulation, disjunctive formulation, or convex
relaxation. Note that, because y is binary, diag(Y ) captures y, and in particular, when
the cross-terms yiy j are not of interest, we may consider the simpler convex hull

H ′ := conv{(x,xxT ,y) : 0≤ x≤ y ∈ {0,1}n}.

For general n, determining computable representations of H and H ′ is difficult.
For example, even when y is fixed to e, the resulting convex hull, called QPB in
[5] for “quadratic programming over the box,” is intractable. When n = 2, an exact
representation for QPB was given in [2], but such a representation is not known for
n ≥ 3. For general n, the paper [8] studies valid inequalities for H ′. For the case
n = 1, H = H ′ since there are no cross-terms, and a computable representation
was given in [10] based on prior work in [9]. This representation has subsequently
been used in a variety of applications; see for example [11,13]. Several authors have
also studied the case when n = 2 but have focused on convexifying in the space of
(x,y,γ), where γ is a scalar associated with the epigraph of a specially structured
quadratic function, e.g., a convex quadratic one; see [3] and references therein.

In Section 2, we consider the case of n = 1 and reprove the representation of
H =H ′ in a new way which incorporates standard ideas from the literature on con-
structing strong semidefinite programming (SDP) relaxations of quadratic programs.
In particular, our proof can be viewed as establishing that H for n= 1 is captured ex-
actly by the relaxation which uses the standard positive semidefinite (PSD) condition
along with the standard Reformulation–Linearization Technique (RLT) constraints
[18].

Our main result in this paper is a representation of H for n = 2, which we derive
in several steps. Note that in this case there is only a single cross-term y1y2, and we
can write H in the form

H = conv{(x,xxT ,y,y1y2) : 0≤ x≤ y ∈ {0,1}2}.

First, in Section 3, we give a disjunctive representation of H that involves additional
variables α ∈ R2, β ∈ R2 as well as 2 second-order cone (SOC) constraints and one
3×3 PSD condition. In Section 4 we project out β and remove the SOC constraints
by replacing the single PSD constraint with four PSD constraints. The primary ef-
fort in the paper occurs in Section 5, where we show that it is in fact only necessary
to impose one of these four PSD constraints in order to represent H . This analysis
is relatively complex due to the fact that we are attempting to characterize the pro-
jection of (x,X ,y,Y12,α) onto (x,X ,y,Y12) where the constraints on (x,X ,y,Y12,α)
include PSD conditions. If all constraints on (x,X ,y,Y12,α) were linear, we could
use standard polyhedral techniques such as Fourier-Motzkin elimination to perform
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this projection. However, since our case includes PSD conditions, we are unaware of
any general methodolgy for characterizing such a projection, and therefore our proof
technique is tailored to the structure of H for n = 2.

The final representation that we obtain for H retains the variables α ∈ R2 and
one 5× 5 PSD constraint. From a computational standpoint this is only a modest
improvement over the original disjunctive representation. However the primary goal
of the paper is to better understand the exact structure of H . To this end, in Section 6,
we describe an alternative derivation for the representation of H obtained in Section
5. In this alternative derivation the α variables that appear in our representation arise
naturally in order to complete a 5×5 PSD matrix V that is a relaxation of the rank-
one matrix vvT , where v = (1,x1,x2, t1, t2) and t = e− y is also binary. Moreover the
PSD condition in our final representation of H is a strengthening of the condition
V � 0. This derivation also leads to a conjecture that the weaker condition V � 0 is
sufficient to characterize H ′, i.e., when there are no cross terms, for n = 2. If true,
this conjecture would establish that H ′ can be represented using PSD, RLT, and
simple linear conditions derived from the binary nature of y, thus generalizing the
results of Section 2 for n = 1 as well as the representation of QPB for n = 2 from
[2]. This conjecture is supported by extensive numerical computations but remains
unproved.

Since our representation for H with n = 2 retains the variables α ∈R2, it is natu-
ral to wonder if there might be a representation of H that involves only convex con-
straints in the variables (x,X ,y,Y12). We have not pursued this topic for several rea-
sons. First, as described above, the α variables arise naturally as elements of the 5×5
matrix V � 0. Second, in situations where a convex set has a spectrahedral represen-
tation (that is, a representation involving PSD conditions and linear constraints), and
an alternative representation using a set of convex constraints fi(·) ≤ 0, i = 1, . . . ,m
where all fi(·) are convex, the representation using convex constraints may be surpris-
ingly complex, possibly involving case conditions and/or a dissection of the domain
of variables; see for example the explicit representations for quadratic optimization
over a triangle or rectangle in R2 in [15] and [14], respectively, compared to the
spectrahedral representations in [2]. Finally, it is known that a set represented as a
projected spectahedron, such as our representation of H that includes the variables
α , may fail to be a basic semialgebraic set [17, Lemma 3.14] and may therefore have
no possible representation in terms of unquantified polynomial inequalities.

Although our analysis is focused on the case of n = 2, our results can also be ap-
plied to problems with larger n by utilizing the convex hull characterization for pairs
of variables xi ≤ yi, x j ≤ y j, i, j ∈ {1, . . . ,n}. Since there are O(n2) such pairs, the
required constraints would only be added a priori for small n; for larger n one could
iteratively search for violated conditions and add them to strengthen the relaxation
of H . The addition of this information based on n = 2 is a promising approach to
strengthen computational methods that have previously utilized only the convex hull
representation for n = 1.

Notation. We use e to denote a vector of arbitrary dimension with each component
equal to one, and ei to denote an elementary vector with all components equal to zero
except for a one in component i. For symmetric matrices X and Y , X � Y denotes
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that X −Y is positive semidefinite (PSD) and X � Y denotes that X −Y is positive
definite. The vector whose components are those of the diagonal entries of a matrix
X is denoted diag(X), and Diag(x) puts the vector x into a square diagonal matrix.
The convex hull of a set is denoted conv{·}.

2 The convex hull for n = 1

In this section we consider the representation of H for n = 1; note that H = H ′ in
this case. The representation given in Theorem 1 below is known, but to our knowl-
edge the proof given here is new. We define

PER :=
{
(α,β ,γ) ∈ R×R×R : α2 ≤ βγ

0≤ β ≤ α ≤ γ

}
to be the so-called perspective cone in R3. In particular, the constraint α2 ≤ βγ is
called a perspective constraint in the literature [10].

Theorem 1 For n = 1, H = H ′ = {(x1,X11,y1) ∈ PER : y1 ≤ 1}.

Proof Let t1 = 1− y1. Then the constraints 0≤ x1 ≤ y1,y1 ∈ {0,1} can be written in
the form x1 + s1 + t1 = 1, x1 ≥ 0, s1 ≥ 0, t1 ∈ {0,1}. By relaxing the rank-one matrix
(1,x1,s1, t1)T (1,x1,s1, t1) we obtain a matrix

W =


1 x1 s1 t1
x1 X11 Z11 0
s1 Z11 S11 0
t1 0 0 t1

 , (1)

where we are using the fact that, for binary t1, it holds that t2
1 = t1 and x1t1 = s1t1 = 0.

Multiplying x1+s1+ t1 = 1 in turn by the variables x1 and s1, we next obtain the RLT
constraints X11 +Z11 = x1 and S11 +Z11 = s1. Let

C = conv{(1,x1,s1, t1)T (1,x1,s1, t1) : x1 + s1 + t1 = 1,x1 ≥ 0,s1 ≥ 0, t1 ∈ {0,1}},
D = {W ∈ DNN : x1 + s1 + t1 = 1,X11 +Z11 = x1,S11 +Z11 = s1},

where the matrix W in the definition of D has the form (1), and DNN denotes the
cone of doubly nonnegative matrices, that is, matrices that are both componentwise
nonnegative and PSD. We claim that C = D . The inclusion C ⊂ D is obvious by
standard SDP-relaxation techniques. However, from [4, Corollary 2.5] we know that

C = {W ∈ CP : x1 + s1 + t1 = 1, X11 +S11 + t1 +2Z11 = 1},

where CP denotes the cone of completely positive matrices, that is, matrices that can
be represented as a sum of nonnegative rank-one matrices. Note that X11 +S11 + t1 +
2Z11 = 1 is the “squared” constraint obtained by substituting appropriate variables
into the expression (x1 + s1 + t1)2 = 1. Then C = D follows from the facts that since
W is 4×4, W ∈ CP ⇐⇒ W ∈ DNN [16], and the constraints x1 + s1 + t1 = 1, X11 +
Z11 = x1 and S11 +Z11 = s1 together imply X11 +S11 + t1 +2Z11 = 1.
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From C = D we conclude that conv{(x1,x2
1,y1) : 0 ≤ x1 ≤ y1,y1 ∈ {0,1}} =

{(x1,X11,1− t1) : x1 + s1 + t1 = 1,X11 + Z11 = x1,S11 + Z11 = s1,W ∈ DNN}. To
complete the proof we will simplify the condition that W � 0. Note that

W =


1 0 0
0 1 0
1 −1 −1
0 0 1


 1 x1 t1

x1 X11 0
t1 0 t1

1 0 1 0
0 1 −1 0
0 0 −1 1

 .

Then W � 0 if and only if 1 x1 t1
x1 X11 0
t1 0 t1

� 0 ⇔
(

1− t1 x1
x1 X11

)
� 0,

which using y1 = 1− t1 is equivalent to y1 ≥ 0, X11 ≥ 0, y1X11 ≥ x2
1. The conditions

of the theorem thus ensure that W ∈ DNN, where t1 = 1− y1 ≥ 0, s1 = 1− t1− x1 =
y1−x1 ≥ 0, Z11 = x1−X11 ≥ 0 and S11 = 1+X11−2x1−t1 = y1+X11−2x1 ≥ 0. ut

Note that the characterization in Theorem 1 is sometimes written in terms of
the lower convex envelope rather than the convex hull, in which case the condition
X11 ≤ x1 is omitted.

3 The disjunctive convex hull for n = 2

In this section, we develop an explicit disjunctive formulation for the convex hull H
when n = 2. As described Section 1, we will use that fact that diag(Y ) = y and that
there is only one cross-term y1y2 to write (x,X ,y,Y12) for points in H .

The representation for H obtained in this section is based on the four values of
y∈ {0,1}2 = {0,e1,e2,e}. Specifically, note that H = conv(H0∪He1 ∪He2 ∪He),
where for each fixed y,

Hy := conv
{
(x,xxT ,y,y1y2) : 0≤ x≤ y

}
.

Each such Hy has a known representation. H0 is just a singleton, and for y = e1
and y = e2 representations based on PER are provided by Theorem 1. For y = e, a
representation is given in [2] as follows. Define

RLTx :=
{(

λ xT

x X

)
:

λ ≥ 0, 0≤ diag(X)≤ x
max{0,x1 + x2−λ} ≤ X12 ≤min{x1,x2}

}
,

which is the homogenization of those points (x,X) satisfying the standard RLT con-
straints associated with 0≤ x≤ e. It is proven in [2] that

He =

{
(x,X ,y,Y12) :

(
1 xT

x X

)
∈ PSD∩RLTx, y = e, Y12 = 1

}
,
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where PSD denotes the cone of positive semidefinite matrices. In the sequel we will
also need

RLTy :=
{
(y,Y12) ∈ R2×R : max{0,y1 + y2−1} ≤ Y12 ≤min{y1,y2}

}
,

which gives the convex hull of (y,y1y2) over all four y ∈ {0,1}2. Note that RLTy is a
polytope, unlike PER, RLTx and PSD, which are convex cones.

In many applications, the product y1y2 is not of interest, so it is also natural to
consider the convex hull H ′ that ignores this product. Based on the known repre-
sentations for He1 , He2 and He, H ′ is certainly contained in the set of (x,X ,y)
satisfying the constraints(

1 xT

x X

)
∈ PSD∩RLTx

(x j,X j j,y j) ∈ PER, y j ≤ 1 ∀ j = 1,2.

However it is easy to generate examples that satisfy these constraints but are not in
H ′. In the next theorem we will focus on H , but we will return to a discussion of
H ′ in Section 6.

Theorem 2 For n = 2, let H + be the set of all (x,X ,y,Y12,α) satisfying the convex
constraints

x≤ y (2a)(
Y12 (x−α)T

x−α X−Diag(β )

)
∈ PSD∩RLTx (2b)

(α j,β j,y j−Y12) ∈ PER ∀ j = 1,2 (2c)
(y,Y12) ∈ RLTy (2d)

where α ∈R2, β ∈R2 are auxiliary variables. Then H equals the projection of H +

onto the variables (x,X ,y,Y12).

Proof We first argue that (2) is a relaxation of H in the lifted space that includes α

and β . It suffices to show that each “rank-1” solution (x,xxT ,y,y1y2) for y ∈ {0,1}2

can be extended in (α,β ) to a feasible solution of (2). We handle the four cases for
y∈ {0,1}2 separately. We clearly always have x≤ y and (y,Y12)∈RLTy, so it remains
to check that (2b) and (2c) hold in each case.

We introduce the notation

Z :=
(

Y12 (x−α)T

x−α X−Diag(β )

)
.

First, let y = 0⇒ x = 0. Then (x,xxT ,y,y1y2) = (0,0,0,0), and we choose (α,β ) =
(0,0). Since all variables are zero, it is straightforward to check that (2b) and (2c) are
satisfied. Second, let y = e⇒ 0≤ x≤ e. Then (x,xxT ,y,y1y2) = (x,xxT ,e,1), and we
choose (α,β ) = (0,0) for this case also, which yields (α j,β j,y j−Y12) = (0,0,0) ∈
PER for j = 1,2. Moreover,

Z =

(
1 xT

x X

)
=

(
1 xT

x xxT

)
∈ PSD∩RLTx,
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as desired.
Next we consider the case y= e1, which implies x1≤ 1 and x2 = 0. Then (x,xxT ,y,

y1y2) = (x1e1,x2
1e1eT

1 ,e1,0), and we choose (α,β ) = (x1e1,x2
1e1). Hence,

Z =

(
0 (x− x1e1)

T

x− x1e1 X− x2
1e1eT

1

)
= 0 ∈ PSD∩RLTx,

satisfying (2b). Moreover, (α1,β1,y1 − y1y2) = (x1,x2
1,1) ∈ PER and (α2,β2,y2 −

y1y2) = (0,0,0) ∈ PER, so that (2c) is satisfied. The final case y = e2 is similar. We
have thus shown that (2) is a relaxation of H .

To complete the proof, we show the reverse containment, i.e., that any member
(x,X ,y,Y12,α,β ) of H + also satisfies (x,X ,y,Y12) ∈H . Define the four scalars

λ0 := 1− y1− y2 +Y12, λe1 := y1−Y12, λe2 := y2−Y12, λe := Y12, (3)

satisfying λ0 +λe1 +λe2 +λe = 1 and note that (y,Y12) ∈ RLTy implies each of these
scalars is nonnegative. So (λ0,λe1 ,λe2 ,λe) is a convex combination. Next, letting
0/0 := 0, define

Z0 := λ
−1
0

(
λ0 0T

0 0

)
Ze2 := λ

−1
e2

(
λe2 α2eT

2
α2e2 β2e2eT

2

)
Ze1 := λ

−1
e1

(
λe1 α1eT

1
α1e1 β1e1eT

1

)
Ze := λ

−1
e

(
λe (x−α)T

x−α X−Diag(β )

)
.

Writing

Zy =:
(

1 xT
y

xy Xy

)
,

we note that (xy,Xy,y,y1y2) ∈Hy for each y ∈ {0,1}2; for y = e1 and y = e2 we
use the representation from Theorem 1, and for y = e we use the result from [2]
stated above this theorem. Hence, the easily verified equations (y,Y12) = λ0(0,0)+
λe1(e1,0)+λe2(e2,0)+λe(e,1) and

(
1 xT

x X

)
= λ0Z0 +λe1Ze1 +λe2Ze2 +λeZe,

establish that (x,X ,y,Y12) ∈H . ut

Since H = conv(H0 ∪He1 ∪He2 ∪He), where there is a known convex rep-
resentation for each Hy := conv

{
(x,xxT ,y,y1y2) : 0≤ x≤ y

}
, standard disjunctive

programming techniques [6] could be used to obtain an extended formulation for H .
The representation given in Theorem 2, which is particulary compact, is convenient
for our subsequent analysis.
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4 Eliminating β

System (2) captures H by projection from a lifted space, which includes the addi-
tional variables α ∈ R2, β ∈ R2. In this section, we eliminate the β variables from
(2), but the price we pay is to replace the semidefinite constraint in (2b) with PSD
conditions on four matrices. In Section 5 we will show that, in order to obtain a
characterization of H , it is in fact only necessary to impose one of these four PSD
conditions.

We begin by introducing some notation. First, define the matrix function M :
R2×S2×R×R2×R2→ S3 by

M(β ) := M(x,X ,Y12,α,β ) :=
(

Y12 (x−α)T

x−α X−Diag(β )

)
. (4)

The simplified notation M(β ) will be convenient because instances of M will only
differ in the values of β ; note also that M does not depend on y. We also define four
different functions βpq : R2×S2×R2×R×R2→ R2 depending on (x,X ,y,Y12,α)
for the indices (p,q) ∈ {1,2}2, where 0/0 := 0:

β11 := β11(x,X ,y,Y12,α) := (X11− x1 +α1,X22− x2 +α2)

β12 := β12(x,X ,y,Y12,α) :=
(
(y1−Y12)

−1
α

2
1 ,X22− x2 +α2

)
β21 := β21(x,X ,y,Y12,α) :=

(
X11− x1 +α1,(y2−Y12)

−1
α

2
2
)

β22 := β22(x,X ,y,Y12,α) :=
(
(y1−Y12)

−1
α

2
1 ,(y2−Y12)

−1
α

2
2
)
.

As with M(β ), the shorter notation βpq will prove more convenient. Note also that p
and q are only index labels to designate the four functions. The result below replaces
the PSD condition in (2b) with the four conditions M(βpq)� 0, p,q ∈ {1,2}.

Theorem 3 For n = 2, let H + be the set of all (x,X ,y,Y12,α) satisfying the convex
constraints

diag(X)≤ x≤ y (5a)
max{0,x1−α1 + x2−α2−Y12} ≤ X12 ≤min{x1−α1,x2−α2} (5b)
0≤ α j ≤ y j−Y12 ∀ j = 1,2 (5c)
(y,Y12) ∈ RLTy (5d)
M(β11)� 0 (5e)
M(β12)� 0 (5f)
M(β21)� 0 (5g)
M(β22)� 0. (5h)

Then H equals the projection of H + onto the variables (x,X ,y,Y12).
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Proof The proof is based on reformulating (2), which using M(β ) can be restated as

x≤ y

M(β ) ∈ PSD∩RLTx

(α j,β j,y j−Y12) ∈ PER ∀ j = 1,2
(y,Y12) ∈ RLTy.

In particular, considering (x,X ,y,Y12,α) fixed, the above system includes four linear
conditions on β :

β j ≥max
{
(y j−Y12)

−1
α

2
j ,X j j− x j +α j

}
∀ j = 1,2.

Moreover, since decreasing β1 and β2 while holding all other variables constant does
not violate M(β )� 0, we may define β1 and β2 by

β j(x,X ,y,Y12,α) := max
{
(y j−Y12)

−1
α

2
j ,X j j− x j +α j

}
∀ j = 1,2

without affecting the projection onto (x,X ,y,Y12). It follows that values (x,X ,y,Y12,α),
which are feasible for (5a)–(5d), are feasible for the constraints (2) if and only if
M(βpq)� 0, (p,q) ∈ {1,2}2. ut

In Section 5, we will show that in order to obtain an exact representation of H
only the condition M(β22) � 0 is required. For clarity in the exposition it is helpful
to write out the conditions M(βpq)� 0 explicitly. In particular, (5e) can be written Y12 x1−α1 x2−α2

x1−α1 x1−α1 X12
x2−α2 X12 x2−α2

� 0. (5e′)

In the remaining cases we can utilize the well-known Schur complement condition to
conclude that (5f) is equivalent to

y1−Y12 0 α1 0
0 Y12 x1−α1 x2−α2

α1 x1−α1 X11 X12
0 x2−α2 X12 x2−α2

� 0, (5f′)

(5g) is equivalent to 
y2−Y12 0 0 α2

0 Y12 x1−α1 x2−α2
0 x1−α1 x1−α1 X12

α2 x2−α2 X12 X22

� 0, (5g′)

and (5h) is equivalent to
y1−Y12 0 0 α1 0

0 y2−Y12 0 0 α2
0 0 Y12 x1−α1 x2−α2

α1 0 x1−α1 X11 X12
0 α2 x2−α2 X12 X22

� 0. (5h′)

In the statement of results in the sequel we will always refer to the conditions (5e)–
(5h), but these statements may be easier to understand if the reader refers to (5e′)–
(5h′).



10 Kurt M. Anstreicher, Samuel Burer

5 Reducing to a single semidefinite condition

Theorem 3 establishes that H is described in part by the four PSD conditions (5e)–
(5h)—one of size 3× 3, two of size 4× 4, and one of size 5× 5. In this section,
we show that Theorem 3 holds even if (5e)–(5g) are not enforced. We show this in
several steps. In section 5.1 we show that if (5a)–(5d) and (5h) hold then condition
(5e) is redundant and at most one of the conditions (5f) and (5g) can fail to hold. In
the sequel, when a point (x,X ,y,Y12,α) satisfies (5a)–(5d) and (5g)–(5h) but not (5f),
we say that such an (x,X ,y,Y12,α) lacks only (5f).

In section 5.2 we show that if (x,X ,y,Y12,α) lacks only (5f) then it is always pos-
sible to construct another (x̄, X̄ ,y,Y12, ᾱ) that lacks only (5f) but with ᾱ1 = 0. In sec-
tion 5.3 we consider how conditions (5f) and (5h) depend on α2 when (x,X ,y,Y12,α)
lacks only (5f) and α1 = 0. In section 5.4 we use the results of section 5.3 to show that
if (x,X ,y,Y12,α) lacks only (5f) and α1 = 0, then it is always possible to construct
α̂ with α̂1 = 0 so that (x,X ,y,Y12, α̂) satisfies all of the conditions of (3). Finally in
section 5.5 we give the final desired result that Theorem 3 holds even if (5e)–(5g) are
not enforced.

5.1 Condition (5e) is redundant and at most one of (5f) and (5g) can fail

Lemma 1 If (x,X ,y,Y12,α) satisfies (5a)–(5d), then it satisfies (5e).

Proof Consider the linear conditions (5a)–(5d) of (5). In terms of the remaining vari-
ables, the constraints (5b) on X12 are simple bounds:

l := max{0,x1−α1 + x2−α2−Y12} ≤ X12 ≤min{x1−α1,x2−α2}=: u.

We claim that (5e) is satisfed at both endpoints X12 = l and X12 = u, which will
prove the theorem since the determinant of every principal submatrix of M(β11) that
includes X12 is a concave quadratic function of X12.

So we need M(β11)� 0 at both X12 = l and X12 = u, i.e., Y12 x1−α1 x2−α2
x1−α1 x1−α1 l
x2−α2 l x2−α2

� 0 and

 Y12 x1−α1 x2−α2
x1−α1 x1−α1 u
x2−α2 u x2−α2

� 0.

The two matrices above share several properties necessary for positive semidefinite-
ness. Both have nonnegative diagonals, and all 2× 2 principal minors are nonnega-
tive:

– For each, the {1,2} principal minor is nonnegative if and only if Y12(x1−α1)−
(x1−α1)

2 ≥ 0. This follows from (5b):

Y12 ≥ (x1−α1)+(x2−α2−X12)≥ (x1−α1)+0 = x1−α1, (6)

which implies Y12(x1−α1)≥ (x1−α1)
2.

– For each, the {1,3} principal minor is similarly nonnegative.
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– The respective {2,3} minors are nonnegative if (x1−α)(x2−α2)− l2 ≥ 0 and
(x1−α1)(x2−α2)−u2 ≥ 0, which hold because 0≤ l ≤ u≤ x1−α1 and 0≤ l ≤
u≤ x2−α2.

It remains to show that the determinants of both matrices are nonnegative. Let us
first examine the case for X12 = l, which itself breaks into two subcases depending on
whether the maximum in l =max{0,x1−α1+x2−α2−Y12} is achieved in the first or
second term. When the maximum is achieved in the first term, the determinant equals
(x1−α1)(x2−α2)(Y12−x1+α1−x2+α2), which is the product of three nonnegative
terms. When the maximum is achieved in the second term, the determinant equals

(Y12− x2 +α2)(Y12− x1 +α1)(x1−α1 + x2−α2−Y12)

which is also the product of three nonnegative terms; in particular, see (6). The case
for X12 = u similarly breaks down into two subcases, which mirror (i) and (ii) above.

ut

From Lemma 1 it is not necessary to enforce (5e). We next show that at most one
of (5f) and (5g) can fail to hold.

Lemma 2 Assume that (x,X ,y,Y12,α) satisfies (5a)–(5d) and (5h). Then at most one
of (5f) and (5g) fails to hold.

Proof Note that the matrices M(β ), β ∈ {β11,β12,β21,β22} differ only in the com-
ponents of Diag(β ). As a result, if X11−α2

1/(y1−Y12) ≥ x1−α1 then (5e) implies
(5f), and if X22−α2

2/(y2−Y12)≥ x2−α2 then (5e) implies (5g). On the other hand,
if X11−α2

1/(y1−Y12)≤ x1−α1 then (5h) implies (5g), and if X22−α2
2/(y2−Y12)≤

x2 − α2 then (5h) implies (5f). Since (5e) holds by Lemma 1 and (5h) holds by
assumption, this means that if (5f) fails then X11 − α2

1/(y1 −Y12) < x1 − α1 and
X22−α2

2/(y2−Y12)> x2−α2, while if (5g) fails then X22−α2
2/(y2−Y12)< x2−α2

and X11−α2
1/(y1−Y12)> x1−α1. It is then obviously impossible for both (5f) and

(5g) to fail. ut

Our goal is to show that in Theorem 3 it is not necessary to enforce (5f) or (5g)
once we enforce (5a)–(5d) and (5h). If (x,X ,y,Y12,α) satisfies (5a)–(5d) and (5f)–
(5h) then by Lemma 1 there is nothing left to show, and by Lemma 2 it is not possible
for both (5f) and (5g) to fail. In the sequel we will assume without loss of generality
that (5g) holds but (5f) fails to hold, implying that X11−α2

1/(y1−Y12) < x1−α1
and X22 − α2

2/(y2 −Y12) ≥ x2 − α2 (see the proof of Lemma 2). To describe this
situation, recall the following terminology regarding system (5): we say that a point
(x,X ,y,Y12,α) lacks only (5f) when the point satisfies all conditions in (5) except that
it violates (5f).

5.2 Reduction to α1 = 0

We next show that given (x,X ,y,Y12,α) that lacks only (5f) with α1 > 0 it is always
possible to construct another (x̄, X̄ ,y,Y12, ᾱ) that lacks only (5f), but with ᾱ1 = 0.
Most of the subsequent analysis will be based on such a (x̄, X̄ ,y,Y12, ᾱ).
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Lemma 3 Suppose that (x,X ,y,Y12,α) lacks only (5f), and suppose α1 > 0. Then
y1−Y12 > 0 and (x̄, X̄ ,y,Y12, ᾱ) lacks only (5f), where

x̄ :=
(

x1−α1

x2

)
, X̄ :=

(
X11−α2

1/(y1−Y12) X12
X12 X22

)
, ᾱ :=

(
0

α2

)
.

Proof If α1 > 0 then (5h) implies that y1−Y12 > 0. For notational convenience, define
v := (x,X ,y,Y12,α) and v̄ := (x̄, X̄ ,y,Y12, ᾱ). We need to check that v̄ satisfies all
conditions in (5) except (5f). Since only x̄1, X̄11, and ᾱ1 differ between v and v̄, and
since x̄1− ᾱ1 = x1−α1, we need to verify X̄11 ≤ x̄1 ≤ y1, 0≤ ᾱ1 ≤ y1−Y12, and (5h)
at v̄, and we need to show (5f) does not hold at v̄. Clearly 0≤ ᾱ1 ≤ y1−Y12 because
ᾱ1 = 0, and x̄1 ≤ x1 ≤ y1.

With ᾱ1 = 0 and x̄1 = x1−α1, conditions (5e) and (5f) at v̄ are respectively equiv-
alent to  Y12 x̄1 x2−α2

x̄1 x̄1 X12
x2−α2 X12 x2−α2

=

 Y12 x1−α1 x2−α2
x1−α1 x1−α1 X12
x2−α2 X12 x2−α2

� 0,

and  Y12 x̄1 x2−α2
x̄1 X̄11 X12

x2−α2 X12 x2−α2

=

 Y12 x1−α1 x2−α2
x1−α1 X11−α2

1/(y1−Y12) X12
x2−α2 X12 x2−α2

� 0.

These conditions both match the conditions of (5e) and (5f) at v, showing that
(5e) holds at v if and only if (5e) holds at v̄, and similarly for (5f). In particular, this
implies v̄ does not satisfy (5f), as desired. In addition, we conclude X̄11 ≤ x̄1 because,
if X̄11 were greater than x̄1, then (5e) holding at v would imply (5f) holds at v by just
comparing the diagonal elements above, but this would violate our assumptions.

Finally, using again the relationship between v̄ and v, (5h) holds at v̄ if and only
if 

y2−Y12 0 0 α2
0 Y12 x1−α1 x2−α2
0 x1−α1 X11−α2

1/(y1−Y12) X12
α2 x2−α2 X12 X22

� 0,

which is true by applying the Schur complement, using the fact that (5h) holds at
v. ut

5.3 Characterizing (5f) and (5h) in terms of α2

Given (x,X ,y,Y12,α) with α1 = 0 that lacks only (5f), in Section 5.4 our goal will be
to modify α2 to a new value α̂2 so as to satisfy all the constraints of (5). To facilitate
this analysis, we now examine how conditions (5f) and (5h) depend on α2. Define

θ := Y12X11− x2
1 ≥ 0. (7)
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Lemma 4 Suppose (x,X ,y,Y12,α) lacks only (5f), where α1 = 0. Then X11 > 0 and
y2−Y12 > 0. Moreover, if (x,X ,y,Y12, α̂) satisfies (5f) where α̂ := (0, α̂2), then α̂2 ∈
[α−2 ,α+

2 ], where

α
−
2 := x2−

X12x1

X11
−

θ +
√

θ(θ +4X12(x1−X12))

2X11
≤ x2−

X12x1

X11
− θ

X11
(8a)

α
+
2 := x2−

X12x1

X11
−

θ −
√

θ(θ +4X12(x1−X12))

2X11
≥ x2−

X12x1

X11
. (8b)

Proof Note that if (x,X ,y,Y12,α) with α1 = 0 satisfies (5h), then X11 = 0 implies that
x1 =X12 = 0. In this case (5f) follows immediately from (5b). In addition, if y2−Y12 =
0 then (5h) implies that α2 = 0, in which case (5f) would follow immediately from
X22 ≤ x2. Thus if (x,X ,y,Y12,α) with α1 = 0 lacks only (5f) we must have X11 > 0
and y2−Y12 > 0.

Because y1−Y12 ≥ 0 and α1 = 0, (5f) is equivalent to

Z :=

 Y12 x1 x2−α2
x1 X11 X12

x2−α2 X12 x2−α2

� 0. (9)

Letting x̄2 := x2−α2, we have det(Z) =−X11x̄2
2+(2X12x1+Y12X11−x2

1)x̄2−Y12X2
12.

As a function of x̄2, this is a strictly concave quadratic since X11 > 0. Moreover, the
discriminant for this quadratic is

(Y12X11− x2
1 +2x1X12)

2−4Y12X11X2
12

= (Y12X11− x2
1)

2 +4x1X12(Y12X11− x2
1)+4x2

1X2
12−4Y12X11X2

12

= (Y12X11− x2
1)

2 +4x2
1X12(X12− x1)+4Y12X11X12(x1−X12)

= (Y12X11− x2
1)

2 +4X12(x1−X12)(Y12X11− x2
1)

= θ(θ +4X12(x1−X12)).

It follows that det(Z)≥ 0 if and only if x̄2 is contained in the interval bounded by the
roots

X12x1

X11
+

θ ±
√

θ(θ +4X12(x1−X12))

2X11
,

or equivalently, if and only if α2 ∈ [α−2 ,α+
2 ]. Therefore if (x,X ,y,Y12, α̂) satisfies (5f)

we must have α̂2 ∈ [α−2 ,α+
2 ]. The inequalities in (8a) and (8b) are used in the sequel;

note that the inequality in (8b) follows from the fact that θ(θ +4X12(x1−X12))≥ θ 2

since X12 ≤ x1. ut

From the above lemma, if (x,X ,y,Y12,α) lacks only (5f), where α1 = 0, then to
have (x,X ,y,Y12, α̂) satisfy (5f) with α̂1 = 0 we certainly require that α̂2 ∈ [α−2 ,α+

2 ].
In the next lemma we show that in fact this condition is necessary and sufficient.

Lemma 5 Suppose (x,X ,y,Y12,α) lacks only (5f), where α1 = 0, and let α̂ :=(0, α̂2).
Then (x,X ,y,Y12, α̂) satisfies (5f) if and only if α̂2 ∈ [α−2 ,α+

2 ].
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Proof We consider Ẑ defined in (9) but with α̂2 substituted for α2; we wish to show
Ẑ � 0 if and only if α̂2 ∈ [α−2 ,α+

2 ]. From Lemma 4 we know that det(Ẑ) ≥ 0 for
such α̂2, but it could happen that Ẑ 6� 0 even when det(Ẑ) ≥ 0. Note that, since
(x,X ,y,Y12,α) satisfies (5h) by assumption, then by the eigenvalue interlacing the-
orem (see, for example, Theorem 4.3.8 of Horn and Johnson [12]), Ẑ has at most one
negative eigenvalue.

We consider two cases based on whether θ ≥ 0 in (7) is positive or zero. If θ > 0,
then by the determinant and discriminant formulas above we have det(Ẑ)> 0⇒ Ẑ� 0
for α̂2 ∈ (α−2 ,α+

2 ), and Ẑ � 0 with det(Ẑ) = 0 when α̂2 = α
−
2 or α̂2 = α

+
2 . The latter

follows, for example, by continuity of the determinants of all principal submatrices.
On the other hand, if θ = 0, then α

−
2 = α

+
2 = x2 − X12x1/X11, det(Ẑ) = 0 when

α̂2 = x2 −X12x1/X11 and det(Ẑ) < 0 for any other value of α̂2. Focusing then on
α̂2 = x2−X12x1/X11, we have

Ẑ =

 Y12 x1 X12x1/X11
x1 X11 X12

X12x1/X11 X12 X12x1/X11

 .

In this case diag(Ẑ) ≥ 0 and det(Ẑ) = 0, so to demonstrate Ẑ � 0, we need to show
that the 2× 2 principal submatrices are positive semidefinite or equivalently have
nonnegative determinants. The {1,2} submatrix is positive semidefinite since (5h) is
satisfied; the determinant of the {1,3} submatrix is nonnegative because Y12X11 ≥
x2

1 ≥ X12x1; and the determinant of the {2,3} submatrix is nonnegative because x1 ≥
X12. ut

The next lemma considers how (5h) depends on α2 when α1 = 0 and (x,X ,y,Y12,α)
lacks only (5f).

Lemma 6 Suppose (x,X ,y,Y12,α) lacks only (5f), where α1 = 0. Define

α
∗
2 :=

(y2−Y12)(x2X11− x1X12)

y2X11− x2
1

=

(
x2−

X12x1

X11

)
y2−Y12

y2− x2
1/X11

, (10)

and let α̂ := (0, α̂2) ∈ R2 denote a vector variable with first entry equal to 0. Then if
α∗2 ≥α2, (x,X ,y,Y12, α̂) satisfies (5h) for any α̂2 ∈ [α2,α

∗
2 ], and if α∗2 ≤α2, (x,X ,y,Y12, α̂)

satisfies (5h) for any α̂2 ∈ [α∗2 ,α2].

Proof When α1 = 0, (5h) is equivalent to

U :=


y2−Y12 0 0 α2

0 Y12 x1 x2−α2
0 x1 X11 X12

α2 x2−α2 X12 X22

� 0,

implying that det(U) ≥ 0. When X11 > 0 and y2−Y12 > 0, which both hold from
Lemma 4, it is straightforward to show that det(U) is a strictly concave quadratic
function of α2, and the maximizer of this determinant is α∗2 . Note that the denomina-
tor y2X11− x2

1 in (10) is strictly positive since Y12X11 ≥ x2
1 and y2 > Y12.
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Assume that α2 < α∗2 . Let α̂2 ∈ (α2,α
∗
2 ] and consider Û equal to U but with α̂2

in place of α2. Then det(Û) > 0 since (x,X ,y,Y12,α) satisfies (5h) and det(Û) is a
strictly concave quadratic function of α̂2. However this implies that Û � 0, since by
eigenvalue interlacing Û can have at most one negative eigenvalue. The argument
when α2 > α∗2 is similar. ut

Finally, for α1 = 0, Lemma 7 considers conditions under which (5f)⇒ (5h), and
(5h)⇒ (5f).

Lemma 7 Let (x,X ,y,Y12,α) be given with α1 = 0, y2−Y12 > 0 and 0≤ x2−X22 ≤
1
4 (y2−Y12). Define ρ :=

√
1−4(x2−X22)/(y2−Y12)≤ 1. Also define

λ
− := 1

2 (1−ρ)(y2−Y12)≤ 1
2 (1+ρ)(y2−Y12) =: λ

+.

Then λ− ≤ α2 ≤ λ+ ensures (5f)⇒ (5h), and α2 ≤ λ− or λ+ ≤ α2 ensures (5h)⇒
(5f).

Proof Comparing diagonal elements of M(β ) for β = β12 and β = β22, similar to
the proof of Lemma 2, we see that: (i) (5f) ⇒ (5h) is ensured when x2 − α2 ≤
X22 − α2

2/(y2 −Y12); and (ii) (5h) ⇒ (5f) is ensured when the reverse inequality
x2 − α2 ≥ X22 − α2

2/(y2 −Y12) holds. Note that λ− and λ+ are the roots of the
quadratic equation x2−α2 = X22−α2

2/(y2−Y12) in α2. In particular, the assump-
tion 0 ≤ x2−X22 ≤ 1

4 (y2−Y12) guarantees that the discriminant is nonnegative and
that x2−α2 ≤ X22−α2

2/(y2−Y12) is satisfied at the midpoint 1
2 (y2−Y12) of λ− and

λ+. Then the final statement of the lemma is just the restatement of (i) and (ii). ut

5.4 Adjusting α2 when α1 = 0

Assume that (x,X ,y,Y12,α) lacks only (5f) with α1 = 0. Then by Lemma 5 either
α2 < α

−
2 or α2 > α

+
2 ; see (8) for the definitions of α

−
2 and α

+
2 . The next two lemmas

show that (x,X ,y,Y12, α̂) then satisfies (5), where in the first case α̂ = (0,α−2 ) and in
the second case α̂ = (0,α+

2 ).

Lemma 8 Assume that (x,X ,y,Y12,α) lacks only (5f) with α1 = 0, and α2 < α
−
2 .

Then (x,X ,y,Y12, α̂) satisfies (5) with α̂ = (0,α−2 ).

Proof From Lemma 5 we know that X11 > 0, y2−Y12 > 0 and (x,X ,y,Y12, α̂) satisfies
(5f). Since (5a)–(5d) ⇒ (5e) by Proposition 1 and (5h) ⇒ (5g) when α1 = 0 by
inspection, we need to establish just (5a)–(5d) and (5h). Since (x,X ,y,Y12,α) satisfies
(5a)–(5d) and we have increased α2 to α

−
2 to form α̂ , we need only show α

−
2 ≤

x2−X12 and α
−
2 ≤ y2−Y12 to establish that (5a)–(5d) hold for (x,X ,y,Y12, α̂). In fact,

we will show α
−
2 ≤ x2−X12 as well as the stronger inequality α

−
2 ≤ λ+, where λ+ =

1
2 (1+ ρ)(y2−Y12) and 0 ≤ ρ ≤ 1 are defined in Lemma 7. Indeed, the conditions
of Lemma 7 hold here because, as (5h) is satisfied but (5f) is violated at α2, we
have x2−α2 ≤ X22−α2

2/(y2−Y12), which ensures 0 ≤ x2−X22 ≤ 1
4 (y2−Y12) and

α2 ≤ λ+. Hence, proving α
−
2 ≤ λ+ will ensure (5f)⇒ (5h).
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To begin, we have

α
−
2 ≤ x2−

X12x1

X11
≤ x2−X12,

where the first inequality uses (8a) and the second uses x1 ≥ X11. Next, to prove
α
−
2 ≤ λ+, assume for contradiction that α2 ≤ λ+ < α

−
2 . Consider α∗2 as defined in

(10). We claim λ+ < α∗2 , which from (10) is equivalent to

x2−
X12x1

X11
> 1

2 (1+ρ)

(
y2−

x2
1

X11

)
.

We then have the chain

x2−
X12x1

X11
≥ α

−
2 +

θ

X11

> 1
2 (1+ρ)(y2−Y12)+

(
Y12−

x2
1

X11

)
≥ 1

2 (1+ρ)(y2−Y12)+
1
2 (1+ρ)

(
Y12−

x2
1

X11

)
= 1

2 (1+ρ)

(
y2−

x2
1

X11

)
,

where the first inequality holds due to (8a), the second due to the definition (7) of
θ and the assumption that λ+ < α

−
2 , and the third because ρ ≤ 1. Then (5h) holds

with α2 replaced by λ+, by Lemma 6. However Lemma 7 then implies that (5f) also
then holds with α2 replaced by λ+, and therefore α

−
2 ≤ λ+ from Lemma 5. This

is the desired contradiction of λ+ < α
−
2 . We must therefore have α

−
2 ≤ λ+, which

completes the proof. ut

Lemma 9 Assume (x,X ,y,Y12,α) lacks only (5f) with α1 = 0, and α2 > α
+
2 . Then

(x,X ,y,Y12, α̂) satisfies (5) with α̂ = (0,α+
2 ).

Proof We follow a similar proof as for the preceding lemma. In this case, however,
since we are decreasing α2 to α

+
2 , we need to show α

+
2 ≥ x1 + x2−X12−Y12 and

α
+
2 ≥ λ−, where λ− = 1

2 (1−ρ)(y2−Y12) as defined in Lemma 7. Note that α2 ≥ λ−

because (x,X ,y,Y12,α) lacks only (5f), just as in the preceding lemma.
For the first inequality, from (8b) it suffices to show

x2−
X12x1

X11
≥ x1 + x2−X12−Y12

which is equivalent to

X12x1 +X11x1−X11X12 ≤ X11Y12.

Since θ = Y12X11− x2
1 ≥ 0 by (7), it thus suffices to show

X12x1 +X11x1−X11X12 ≤ x2
1

X12(x1−X11) ≤ x1(x1−X11),
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which certainly holds because X12 ≤ x1 and X11 ≤ x1.
For the second inequality, assume by contradiction that α

+
2 < λ−. We claim α∗2 <

λ−, which by (10) is equivalent to

x2−
X12x1

X11
< 1

2 (1−ρ)

(
y2−

x2
1

X11

)
.

From (8b), the assumption α
+
2 < λ−, and the inequality Y12X11 ≥ x2

1, we have

x2−
X12x1

X11
≤ α

+
2 < λ

− = 1
2 (1−ρ)(y2−Y12)≤ 1

2 (1−ρ)

(
y2−

x2
1

X11

)
,

as desired. Since α∗2 ≤ λ− ≤ α2, Lemma 6 implies that (5h) holds with α2 replaced
by λ−. Lemma 7 then implies that (5f) also then holds with α2 replaced by λ−, and
therefore α

+
2 ≥ λ− from Lemma 5. This contradicts the assumption that α

+
2 < λ−,

as desired. ut

5.5 Removing (5f) and (5g) does not affect the projection

We can now prove the following streamlined version of Theorem 3, which requires
only one of the four PSD conditions (5e)–(5h).

Theorem 4 For n = 2, let H + be the set of all (x,X ,y,Y12,α) satisfying the con-
vex constraints (5a)–(5d) and (5h). Then H equals the projection of H + onto the
variables (x,X ,y,Y12).

Proof We must show that if (x,X ,y,Y12,α) satisfies (5a)–(5d) and (5h), then (x,X ,y,Y12)
∈H . By Theorem 3 this is equivalent to showing that there is an α ′ so that (x,X ,y,Y12,α

′)
satisfies all of the constraints in (5).

If (5a)–(5d) are satisfied, then (5e) is redundant by Proposition 1. Moreover, as
described above Lemma 3, if (5h) also holds then at most one of (5f)–(5g) can fail to
hold. If both (5f)–(5g) hold then there is nothing to show, so we assume without loss
of generality that (5f) fails to hold; that is, (x,X ,y,Y12,α) lacks only (5f).

Assume first that α1 = 0. If α2 <α
−
2 , then by Lemma 8 we know that (x,X ,y,Y12, α̂)

satisfies (5), where α̂ = (0,α−2 ). Similarly, if α2 > α
+
2 , then by Lemma 9 we have

the same conclusion using α̂ = (0,α+
2 ). Therefore (x,X ,y,Y12) ∈H .

If α1 > 0 we apply the transformation in Lemma 3 to obtain (x̄, X̄ ,y,Y12, ᾱ), with
ᾱ = (0,α2), that lacks only (5f). We then apply either Lemma 8 or Lemma 9 to
obtain α̂ = (0, α̂2) so that (x̄, X̄ ,y,Y12, α̂) satisfies (5). Let α ′ = (α1, α̂2). We claim
that (x,X ,y,Y12,α

′) satisfies (5) as well. For the linear conditions (5a)–(5d) this is
immediate from the facts that both (x,X ,y,Y12,α) and (x̄, X̄ ,y,Y12, α̂) satisfy (5a)–
(5d), and x̄1−ᾱ1 = x1−α1. Therefore (5e) is also satisfied at (x,X ,y,Y12,α

′). The fact
that the remaining PSD conditions (5f)–(5h) are satisfied at (x,X ,y,Y12,α

′) follows
from the facts that these conditions are satisfied at (x̄, X̄ ,y,Y12, α̂), x̄1− ᾱ1 = x1−α1,
the definition of X̄11 and the Schur complement condition. ut
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6 Another interpretation

The representation for H in Theorem 4 was obtained by starting with the represen-
tation in Theorem 3 and then arguing that only the single semidefiniteness constraint
(5h) was necessary. In this section we describe an alternative derivation for the repre-
sentation in Theorem 4. This derivation provides another interpretation for the condi-
tions of Theorem 4 and also leads to a simple conjecture for a representation of H ′

as defined in Section 1.
The alternative derivation is based on replacing the variables y with t = e− y and

introducing the slack variables s such that x+s+t = e, as was done for the case n = 1
in the proof of Theorem 1. Note that each yi is binary if and only if ti is binary, and
(y,Y12)∈RLTy if and only if (t,T12)∈RLTy where T12 = 1+Y12−y1−y2. In fact the
linear constraints (5a)–(5d) can be obtained by considering the equations xi+si+ti =
1, i = 1,2, generating RLT constraints by multiplying each equation in turn by the
variables (x j,s j, t j), i = 1,2, and then projecting onto the variables (x,X , t,T12,α),
where α1 ≈ x1t2 = x1(1− y2), α2 ≈ x2t1 = x2(1− y1), T12 = 1+Y12− y1− y2 ≈ t1t2.
Let

S =


1 1 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 ,

and note that S is nonsingular since it is a row permutation of a lower triangular
matrix with every diagonal entry equal to one. Substituting variables and applying
a symmetric transformation that preserves semidefiniteness, the PSD condition (5h′)
can be written

S


t1−T12 0 0 α1 0

0 t2−T12 0 0 α2
0 0 1+T12− t1− t2 x1−α1 x2−α2

α1 0 x1 X11 X12
0 α2 x2 X12 X22

ST � 0,

which is 
1−T12 x1 x2 t1−T12 t2−T12

x1 X11 X12 0 α1
x2 X12 X22 α2 0

t1−T12 0 α2 t1−T12 0
t2−T12 α1 0 0 t2−T12

� 0. (11)

The PSD constraint (11) has a simple interpretation as a strengthening of the natural
PSD condition

V =


1 x1 x2 t1 t2
x1 X11 X12 0 α1
x2 X12 X22 α2 0
t1 0 α2 t1 T12
t2 α1 0 T12 t2

� 0, (12)
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where V is a relaxation of the rank-one matrix vvT with v= (1,x1,x2, t1, t2)T . The ma-
trix in (11) is obtained from V in (12) by subtracting T12uuT , where u=(1,0,0,1,1)T .
This can be interpreted as removing the portion of V corresponding to t = e, or equiv-
alently y = 0, if V is decomposed into a convex combination of four matrices corre-
sponding to t ∈ {0,e1,e2,e}, similar to the decomposition of H into a convex combi-
nation of Hy, y∈{0,e1,e2,e} in Section 3. Note in particular that T12 = λ0, as defined
in (3). Alternatively, as suggested by a referee, the condition (11) can be viewed as a
relaxation of the condition that vvT � 0 for v = (1−T12,x1,x2, t1−T12, t2−T12)

T .
We know that to obtain a representation of H the condition (11) cannot be re-

placed by (12); there are solutions (x,X ,y,Y12,α) that are feasible with the weaker
PSD condition but where (x,X ,y,Y12) /∈H . However it appears that the condition
(12) is sufficient to obtain a representation of H ′. The following conjecture regard-
ing H ′ is supported by extensive numerical computations, but remains unproved.

Conjecture 1 For n= 2, let H + be the set of (x,X ,y,Y12,α) satisfying the constraints
(5a)–(5d) and (12), where t1 = 1− y1, t2 = 1− y2 and T12 = 1+Y12− y1− y2. Then
H ′ equals the projection of H + onto (x,X ,y).

Note that (5a)–(5d) and (12) amount to the relaxation of (x,xxT ,y), which enforces
PSD and RLT in the (x,X ,y,Y12) space and also exploits the binary nature of y. In
other words, the standard approach for creating a strong SDP relaxation would be
sufficient to capture the convex hull of (x,X ,y) in this case, similar to the case of
n = 1 as shown in the proof of Theorem 1, as well as the characterization of QPB
for n = 2 from [2]. Finally, the RLT constraints and PSD condition (12) extend in a
straightforward way to n > 2. For arbitrary n the constraint1 xT tT

x X ℵ

t ℵT T

� 0 (13)

where diag(ℵ) = 0 and diag(T ) = t relaxes the condition vvT � 0 for v = (1,xT , tT )T

where x ∈ Rn
+ and t ∈ {0,1}n. If Conjecture 1 is true, the one PSD condition (13),

together with linear constraints constraints is sufficient to exactly represent the pro-
jection of H ′ onto any (xi,x j,Xii,X j j,Xi j,yi,y j) corresponding to a subset of two
variables 0≤ xi ≤ yi = 1− ti and 0≤ x j ≤ y j = 1− t j.
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