
Copyright information to be inserted by the Publishers

SOLVING QUADRATIC ASSIGNMENT

PROBLEMS USING CONVEX QUADRATIC

PROGRAMMING RELAXATIONS

Nathan W� Brixius

Dept� of Computer Science� University of Iowa� Iowa City� IA �����

Kurt M� Anstreicher

Dept� of Management Sciences� University of Iowa� Iowa City� IA �����

We describe a branch�and�bound algorithm for the quadratic assignment problem �QAP� that
uses a convex quadratic programming �QP� relaxation to obtain a bound at each node� The
QP subproblems are approximately solved using the Frank�Wolfe algorithm� which in this case
requires the solution of a linear assignment problem on each iteration� Our branching strategy
makes extensive use of dual information associated with the QP subproblems� We obtain state�
of�the�art computational results on large benchmark QAPs�

KEY WORDS� Quadratic assignment problem� branch�and�bound� quadratic programming�
Frank�Wolfe algorithm

� INTRODUCTION

The quadratic assignment problem �QAP� in �Koopmans�Beckmann� form is

QAP�A�B�C� � min tr�AXB �C�XT

s�t� X � 	�

where A
 B and C are n � n matrices
 tr denotes the trace of a matrix
 and 	 is
the set of n � n permutation matrices� Throughout we assume that A and B are
symmetric� In a typical location application aij is the �ow between facilities i and
j
 bkl is the distance between locations k and l
 and cik is the �xed cost of assigning
facility i to location k�
It is well known that QAP�A�B�C� is an NP�Hard problem for example combi�

natorial optimization problems such as traveling salesman and graph partitioning
can be formulated as QAPs� Moreover QAPs have proven to be extremely di�cult
to solve to optimality in practice� General problems with n � �� are challenging

and several problems with n � �� have been open for as long as �� years� For recent

�

� N�W� BRIXIUS AND K�M� ANSTREICHER

surveys which include the history and applications of the QAP and a discussion of
solution methods see ���
 ����
 and �����
The usual approach to optimally solving QAP�A�B�C� is to employ a branch�

and�bound �B�B� algorithm� �See ���� and ���� for alternatives based on polyhedral
theory�� Early papers reporting results of B�B algorithms for QAP include ���

���
 ����
 and ����� The most important element in the construction of a B�B
algorithm for the QAP appears to be the method used to obtain a bound for the
subproblem �itself a lower�dimensional QAP� at each node of the B�B tree� Most
B�B algorithms for the QAP have utilized the well�known Gilmore�Lawler bound
�GLB�� In ���� the GLB and a related �variance reduction� bound are used in a
B�B algorithm to solve to optimality a variety of test problems up to size n � ���
Using a B�B algorithm based on GLB
 and high�performance computing hardware

Clausen and co�workers ��
 ��� solved to optimality problems up to size n � ��
 the
most di�cult being the nug�� problem� �All problem names
 such as nug��
 are
taken from QAPLIB ����� The larger nug�� problem was subsequently solved ����
using a bounding approach based on dynamic programming�
Other bounds for the QAP include bounds based on a linear programming �LP�

relaxation of the problem
 and bounds based on eigenvalues of A and B� As shown
in ���� a number of known bounds for QAP
 including the GLB
 can be obtained
from feasible solutions for the dual of an LP relaxation� The best published B�B
results using such dual�LP bounds are due to Hahn et al� ����� In recent work
���� the approach of ���� is re�ned and used to obtain the best results to date on
the di�cult nug�� and nug�� problems
 as well as the �rst solution of the kra��a
problem�
Eigenvalue�based bounds for the QAP are described in ���� and ����� Results

in ���� show that the �projected eigenvalue bound� PB�A�B�C� of ���� may be
competitive with GLB in a B�B algorithm� Results in ���� on the applicability of
the �triangle decomposition bound� of ���� are much less encouraging�
A new bound for QAP�A�B�C� based on convex quadratic programming �QP�

is described in ���� The new bound
 QPB�A�B�C� is related to the projected eigen�
value bound PB�A�B�C�� The construction of QPB�A�B�C� utilizes a semide�nite
programming �SDP� representation of the basic eigenvalue bound of ����
 from ����
In this paper we consider a complete B�B algorithm for the QAP based on the use
of the QP bound at each node of the B�B tree� The lower bound QPB�A�B�C� is
reviewed in Section �� In Section � we also decribe an approach based on the Frank�
Wolfe �FW� algorithm that we use to approximately solve the convex quadratic
program associated with QPB�A�B�C�� The FW algorithm generates dual infor�
mation that can be used to estimate the e�ect of �xing an assignment xij � � to
create a �child� problem at a node in the B�B tree� Our branching rules
 described
in Section �
 make extensive use of this dual information� In Section � we give com�
putational results on a variety of problems of size n � �� from QAPLIB� We obtain
state�of�the�art results on many problems
 including instances of the famous nugxx
problems up to size n � ���
Notation� We use trA to denote the trace of a square matrix A
 and A �B �

tr�ABT �� For symmetric matrices A and B we use B � A to denote that B � A

SOLVING QUADRATIC ASSIGNMENT PROBLEMS �

is positive semide�nite
 and B � A to denote that B � A is positive de�nite� We
use e to denote a vector of arbitrary dimension with each component equal to one�
The Kronecker product of matrices A and B is denoted A�B� For an n�n matrix
X
 vec�X� denotes the vector in �n� obtained by stacking the columns of X atop
one another
 in the natural order� See ���� or ���� for basic properties of Kronecker
products and vec���� For an n � n symmetric matrix A
 ��A� � �n denotes the
vector of eigenvalues of A�
The �minimal product� of two vectors x and y in �n is denoted hx� yi�
 and is

de�ned by

hx� yi� � min
�

nX
i��

xiy��i��

where ���� is a permutation of �� �� � � � � n� It is easy to show that if x� 	 x� 	 � � � 	
xn
 and y�
 y�
 � � �
 yn
 then hx� yi� � xTy�
Throughout the paper we use the convention of letting the name of an opti�

mization problem
 such as QAP�A�B�C�
 also refer to the solution value of the
problem�

� THE QUADRATIC PROGRAMMING BOUND

We use the convex QP bound for QAP�A�B�C� described in ���� Let V be an
n � �n � �� matrix with orthonormal columns such that eTV � �
 and de�ne
�A � V TAV
 �B � V TBV � The bound is de�ned as

QPB�A�B�C� � min vec�X�TQvec�X� �C �X � h�� �A�� �� �B�i�

s�t� Xe � XT e � e

X
 ��

where Q is a matrix of the form Q � �B � A� � �I � S� � �T � I�� The matrices
S and T are of the form S � V �SV T
 T � V �TV T
 where �S and �T are optimal
solutions of the semide�nite programming problem

SDD� �A� �B� � max tr �S � tr �T

s�t� �I � �S� � � �T � I� � � �B � �A��

It is known ��� that SDD� �A� �B� � h�� �A�� �� �B�i�
 and as shown in ��
 Section ��
optimal �S
 �T can easily be obtained from the spectral decompositions of �A and �B�
The quadratic programming bound QPB�A�B�C� is related to the projected

eigenvalue bound ����

PB�A�B�C� � h�� �A�� �� �B�i� � LAP�D� �
�

n�
�eTAe��eTBe��

where D � C � AeeTB and LAP�D� is the linear assignment problem with cost
matrix D� By construction �see ��
 Section ���

PB�A�B�C� 	 QPB�A�B�C� 	 QAP�A�B�C��

	 N�W� BRIXIUS AND K�M� ANSTREICHER

and ��
 Lemma �� PB�A�B�C� � QPB�A�B�C� if PB�A�B�C� � QAP�A�B�C�
and the solution of LAP�D� is unique�

The constraints Xe � XT e � e may be written in the form F vec�X� � e
 where

F �

�
eT � I
I � eT

�
�

It is easy to show that the columns of V �V are a basis for the nullspace of F �see for
example ��
 Lemma ������ It then follows from the de�nition of Q
 and the fact that
�S and �T are feasible for SDD� �A� �B�
 that �V T�V T �Q�V �V � � �
 or equivalentlyQ
is positive semide�nite on the nullspace of F � Therefore QPB�A�B�C� is a convex
quadratic programming problem�

In ���
 QPB�A�B�C� is computed using an interior�point algorithm� This ap�
proach allows for a high�accuracy solution
 but for the dimensions of interest to us
would be too time�consuming for use in a branch�and�bound context� The method�
ology we employ here is to approximately solve QPB�A�B�C� using the well�known
Frank�Wolfe �FW� algorithm ����� Although the FW algorithm is provably globally
convergent
 the method is known to have poor asymptotic performance� This is
not of great concern to us since QPB�A�B�C� is only being used to obtain a bound
on QAP�A�B�C�� An excellent feature of the FW algorithm in our application is
that the work on each iteration is dominated by the solution of a linear assignment
problem �LAP�
 which can be performed extremely rapidly�

Let f�X� � vec�X�TQvec�X� �C �X � h�� �A�� �� �B�i�
 and let

G � G�X� � ��AXB � SX �XT � � C ���

denote the gradient of f��� at X

Gij�X� �
�f�X�

�Xij

�

Each iteration k
 � of the FW algorithm begins with a feasible solution Xk for
QPB�A�B�C�� Let Gk � G�Xk�
 and let X�

k be an optimal solution of LAP�Gk��
The algorithm then takes a step of the form

Xk�� � Xk � ��X�

k �Xk�� ���

where � 	 � 	 � is chosen so as to minimize f�Xk���� Note that since f��� is
quadratic the computation of the minimizing � is trivial� Substituting ��� into ���

we �nd that

Gk�� � ��� ��Gk � ����AX�

kB � SX�

k �X�

kT � � C��

Since X�

k is always a permutation matrix
 the O�n�� work on an iteration of the FW
algorithm can be reduced to a single matrix multiplication �to compute AX�

kB�

and the solution of one linear assignment problem�

SOLVING QUADRATIC ASSIGNMENT PROBLEMS

2000

2100

2200

2300

2400

2500

0 20 40 60 80 100 120 140

Iteration k

UB
LB

FIGURE �� FW iterations on nug�� root problem

Associated with an optimal solution X�

k of LAP�Gk� is a matrix of �reduced
costs� Uk
 such that for any X with Xe � XT e � e

Gk �X � LAP�Gk� � Uk �X� ���

Since f��� is convex on the nullspace of F
 for any X feasible in QAP�A�B�C� we
have

f�X�
 f�Xk� � Gk � �X �Xk� ���

� f�Xk�� Gk �Xk � LAP�Gk� � Uk �X

� f�Xk� � Gk � �X
�

k �Xk� � Uk �X

� zk � Uk �X� ���

where

zk � f�Xk� � Gk�X
�

k �Xk� � f�Xk� � Uk �Xk� ���

and the second equality in ��� follows from ��� and the fact that Uk �X�

k � �� Since
Uk �X
 � for any X
 �
 ��� implies that on each iteration k of the FW algorithm
we have a lower bound zk 	 QPB�A�B�C� 	 QAP�A�B�C��
In Figure � we illustrate the behavior of the FW algorithm in approximately

solving the problem QPB�A�B�C� associated with the nug�� QAP� The algorithm
is initialized at X� � ���n�eeT � In the �gure we plot the sequence of upper bounds
�UB� vk � f�Xk�
 and lower bounds �LB� zk
 k
 �� Note that the lower bounds
are clearly non�monotonic �in particular z� � z�� and the asymptotic behavior
appears to be poor
 as expected� On the other hand the lower bound zk obtained
after about k � ��� FW iterations is a reasonable approximation of QPB�A�B�C��

� N�W� BRIXIUS AND K�M� ANSTREICHER

On a fast workstation z��� can be obtained for a problem with n � �� in less than
��� seconds of CPU time�
For the nug�� problem the initial bound z� generated by the FW algorithm is

������
 which is precisely the value of the projected eigenvalue bound for the same
problem� This is not a coincidence
 as demonstrated in the following lemma�
Lemma ���� Suppose that the Frank�Wolfe algorithm is applied to QPB�A�B�C�

with the initial solution X� � ���n�eeT � Then z� � PB�A�B�C��
Proof� From ���

G� �
�

n

�
AeeTB � SeeT � eeTT

�
�C �

�

n
�AeeTB� �C�

because S � V �SV T
 T � V �TV T
 and eTV � �� Similarly

f�X�� � vec�X��
TQvec�X�� � C �X� � h�� �A�� �� �B�i�

� tr�AX�BX
T
� � SX�X

T
� �X�TX

T
� � �C �X� � h�� �A�� �� �B�i�

�
�

n�
tr�AeeTBeeT � � C �X� � h�� �A�� �� �B�i�

�
�

n�
�eTAe��eTBe� � C �X� � h�� �A�� �� �B�i��

Let D � G� � C � ���n�AeeTB� From ��� we then have

z� � f�X�� � LAP�D� � G� �X�

� h�� �A�� �� �B�i� � LAP�D� �
�

n�
�eTAe��eTBe� �

�

n
�AeeTB� �X�

� h�� �A�� �� �B�i� � LAP�D� �
�

n�
�eTAe��eTBe�

� PB�A�B�C��

The behavior illustrated in Figure � is typical in our experience� When ini�
tialized at X� � ���n�eeT
 the bound z� drops sharply from the inital value
z� � PB�A�B�C�
 and the bound sequence zk
 k
 � then increases relatively
steadily� We have experimented with alternative initializations for the FW algo�
rithm
 and schemes for enforcing monotonicity on the bound sequence
 but none
of these e�orts have produced reliable improvements in the overall performance of
the algorithm�
In practice we make a small modi�cation of the FW procedure described above

based on the use of a matrix �Gk 	 Gk� Since X
 � for any feasible X
 it follows
from ��� that

f�X�
 f�Xk� � �Gk �X �Gk �Xk

� f�Xk�� Gk �Xk � LAP� �Gk� � �Uk �X

� �zk � �Uk �X�

SOLVING QUADRATIC ASSIGNMENT PROBLEMS

where �Uk
 � is the matrix of reduced costs from LAP� �Gk�

�zk � h�� �A�� �� �B�i� � f�Xk� �Gk �Xk � �Gk � �Xk�

and �Xk is an optimal solution of LAP� �Gk�� By using a matrix �Gk in place of Gk

we can restrict the LAP solved on each FW iteration to have integer data� In
particular
 if

�Gk �
�

	k
b	kGkc�

where 	k is a positive scaling factor
 then �Gk 	 Gk
 LAP� �Gk� � ���	k� LAP�	k �Gk�

and 	k �Gk is an integer matrix� By using a larger value of 	k
 LAP� �Gk� becomes
a better approximation of LAP�Gk�
 but the time to solve LAP�	 �Gk� typically
increases� �It is well known that the time to solve a LAP with integer data is
sensitive to the scale of the data�� In addition to providing a speed improvement
 the
use of LAPs with integer data prevents roundo� error and improves the robustness
of our algorithm� In our implementation each integer LAP is solved using the
well�known augmenting path algorithm of ����
 chosen for its excellent performance
on small dense LAPs �see ����� as encountered in our application� The spectral
decompositions required for the construction of QPB are performed using routines
from the Meschach library �����

� BRANCHING STRATEGY

In our branch�and�bound implementation we employ �polytomic� branching
 as
introduced for QAP in ���� and used in numerous subsequent implementations�
At a given node there is a set of �xed assignments Xi���i� � �
 i � �I � Let N �
f�� �� � � �� ng
 �J � f��i� j i � �Ig
 I � N n �I
 J � N n �J � If the node is not fathomed

we generate children according to one of the following schemes�

Row Branching�Fix i � I� Generate a child problem for each j � J for which the
problem with Xij � � cannot be eliminated�

Column Branching�Fix j � J � Generate a child problem for each i � I for which
the problem with Xij � � cannot be eliminated�

In both of the above cases the elimination of children is based on the dual matrix
U or �U described in the previous section� For simplicity we assume throughout
this section that LAP�Gk�
 rather than LAP� �Gk�
 is solved on each iteration k of
the FW algorithm �see the previous section for the distinction�� The modi�cations
required when �Gk is used are straightforward� Consider the root node
 and let
v denote the incumbent objective value that is
 the objective value for the best
known feasible solution of QAP�A�B�C�� Let z � zk denote the lower bound ���
produced after k FW iterations
 and let U � Uk be the corresponding reduced cost
matrix� Since U
 � and X
 �
 ��� implies that if z � uij
 v
 then no solution
with Xij � � can have objective value less than v
 and therefore this potential
child can be eliminated� Using U in this way is similar to the use of the matrix of

� N�W� BRIXIUS AND K�M� ANSTREICHER

reduced costs associated with the �master� LAP for the GLB to eliminate potential
children
 as in �����
We next describe several di�erent rules that we employ in choosing the row i or

column j on which to branch� For simplicity we �rst describe all the rules in terms
of row branching� Column branching
 and the treatment of problem symmetries

are described later� The rules are speci�ed as they would be implemented at the
root node ��I � �J � ��� At an arbitrary node in the tree the problem is of the form
QAP�A�� B�� C�� where the matrices A�� B�� C� are all of dimension n� j�Ij
 and the
implementation of branching rules is similar�
Our �rst two branching rules use the information in U to try to increase the

child bounds as much as possible
 or alternatively minimize the number of children
created�

Rule ��Branch on the row i that has the highest value of
P

j�N Uij �

Rule ��Branch on the row i that produces the smallest number of children� In the
event of a tie
 choose the row with the largest value

P
j�N �

i

Uij
 where N �
i � fj �

N j z � uij � vg�

Note that the set N �

i in Rule � consists exactly of the child problems withXij � �
that cannot be eliminated� Rule � is a straightforward analog of the branching rule
used in ����
 and is e�ective in reducing the size of the tree for small problems�
We make extensive use of Rule � once we are deep enough in the tree so that a
non�trivial fraction of the children can be eliminated� At lower depths in the tree
on large problems
 however
 it is typically the case that no children can be elimi�
nated� In this case we also consider branching rules that obtain more information
by �prospectively� setting Xij � �
 and computing QPB for the associated QAP
problem of dimension n � �
 before making the �nal decision of where to branch�
This is analogous to the well�known technique of �strong branching� for integer
and mixed�integer linear programming
 see for example �����

Rule ��Let I� denote the set of rows having the k� highest values of
P

j�N Uij �

For each i � I�
 and j � N
 compute a lower bound zij � zijk� by forming the
reduced problem QAP�A�� B�� C�� corresponding to Xij � �
 and approximately
solving QPB�A�� B�� C �� using k� FW iterations� Branch on the row i � I� having
the highest value of

P
j�N zij �

In Rule � the zij values are only computed for a subset of the k� most promising
rows
 based on Rule �� The purpose of this restriction is to economize the time
required to compute the zij� In addition
 the number of FW iterations k� used
to compute the zij bounds is typically less than the number of iterations used to
compute the lower bound z at the current node
 again to reduce the computation
time�
Our �nal rule is an elaboration of Rule �� Note that when a prospective bound

zij is computed in the course of Rule �
 there is an associated dual matrix U ij

of dimension n � �� Rule � is based on applying Rule � to each of these matrices

SOLVING QUADRATIC ASSIGNMENT PROBLEMS �

FIGURE �� Grid for distances in nug�� QAP

v v v

v v v
� � �

� � �

U ij� Rule � can be thought of as a �look�ahead� branching rule
 where we try to
maximize the total increase in the bounds after � levels of branching�

Rule ��Let I� denote the set of rows having the k� highest values of
P

j�N Uij �

For each i � I�
 and j � N
 compute a lower bound zij � zij
k�

by forming the
reduced problem QAP�A�� B�� C�� corresponding to Xij � �
 and approximately
solving QPB�A�� B�� C�� using k� FW iterations� Let U ij be the reduced cost
matrix associated with zij� Let vij be the maximal row sum of U ij
 and let
wij � �jN j � ��zij � vij � Branch on the row i � I� having the highest value ofP

j�N wij�

In practice we implement Rules ��� in a somewhat more complex fashion than
described above� In particular
 we consider column branching as well as row branch�
ing
 and symmetries in the problem data� Below we describe the details associated
with these extensions�
Symmetry� Many QAP problems arise from applications where the distance ma�
trix B exhibits symmetries that can be exploited to reduce the number of child
problems generated in the branching process� Logic for exploiting such symmetries
was introduced in ����
 and has been used in many subsequent branch�and�bound
implementations� In a problem with symmetries there is a subset of the locations
J� such that without loss of generality the children of the root problem can be
restricted to be of the form Xij � �
 j � J�
 regardless of the row i� In addition

there may be one or more pairs of subsets of locations fJ�� J�g so that if at any node
in the tree the set of �xed locations �J satis�es �J J�
 then the children can be
restricted to be of the form Xij � �
 j � J�
 regardless of the choice of i � I� For a
simple example consider the problem nug��� The distance matrix for this problem
corresponds to the l� distances on a � � � rectangular grid
 as shown in Figure ��
In this case we may take J� � f�� �g
 J� � f�� �g
 J� � f�� �� �� �g� Larger problems
may have more than one pair of fJ�� J�g subsets� At a node where symmetry can
be exploited we consider only row branching
 and replace the index set N used in
the branching rules with an appropriate J N �
Column Branching� When symmetry is not present at a node we consider column
branching as well as row branching� The modi�cations to the branching rules are
straightforward� For Rule � we choose the row i with the highest row sum from

�� N�W� BRIXIUS AND K�M� ANSTREICHER

U
 or the column j with the highest column sum
 whichever is higher� For Rule �
we branch on the row or column which produces the smallest number of children�
For Rule � we choose the k� most promising rows and k� most promising columns

compute all the required zij bounds
 and then choose the row or column with
the highest sum� Rule � is similar
 with vij corresponding to the maximal row or
column sum of U ij�
To completely specify the above branching rules a number of parameters must

be chosen� These are�

NFW�� Maximum number of FW iterations used�

NFW�� Maximum number of FW iterations used if node cannot be fathomed�

NFW�� Number of FW iterations used for prospective bound computations �Rules
� and � only same as k� in description above��

NBEST� Number of rows columns in which to compute prospective bounds �Rules
� and � only same as k� in description above��

UPDATE� Number of FW iterations between update of dual matrices S
 T �

We now give some details regarding these parameters� On each FW iteration we
obtain an objective value vk � f�Xk� and lower bound zk� If zk � v the current
node can be fathomed
 and the FW process is terminated� On the other hand if
vk � v then we know that the lower bound from QPB will not be high enough to
fathom the current node� By setting NFW��NFW� we allow for earlier termination
in the latter case� �Note however that even when a node cannot be fathomed it
is desirable to compute a reasonably accurate bound z for branching purposes��
The complete logic for the number of FW iterations is then that we terminate on
iteration k if zk � v
 or vk � v and k
 NFW�
 or k�NFW��
As described in the previous section
 QPB�A�B�C� involves the choice of matrices

�S
 �T that are optimal in SDD� �A� �B�� Such an optimal solution is not in general
unique
 and di�erent choices of �S
 �T may produce di�erent values of QPB�A�B�C��
Given a choice of �S
 �T
 and an approximate solution X of QPB�A�B�C�
 a simple
procedure is described in ��
 Section �� that attempts to generate a new dual optimal
solution that will increase QPB�A�B�C�� We apply one step of this procedure every
UPDATE FW iterations
 using the current primal solution Xk as the basis for the
update�
In general we combine the � di�erent branching rules given above
 with suitable

parameter choices
 to obtain a complete branching strategy� In the implementation
described here the choice of branching rule is based on depth in the tree
 that is
 the
number of �xed assignments j�Ij
 and the tree is traversed using depth��rst search
����� Our simplest branching strategy
 Strategy A
 is shown in Table �� Strategy
A uses Rule �
 with NFW�����
 NFW�����
 updating the dual matrices every
�� FW iterations
 for all levels in the tree �note that with polytomic branching the
maximum level in the tree is n�� A more complex branching strategy
 Strategy B
 is
given in Table �� Strategy B uses Rule � on levels � and � of the tree
 Rule � on level
�
 and Rule � at all higher levels� In the next section we consider computational
results obtained using Strategies A and B
 and two more strategies C and D that

SOLVING QUADRATIC ASSIGNMENT PROBLEMS ��

TABLE �� Branching strategy A

Depth Rule NFW� NFW� NFW� NBEST UPDATE

�� � ��� ��� ! ! ��

TABLE �� Branching strategy B

Depth Rule NFW� NFW� NFW� NBEST UPDATE

� � ��� ��� �� �� ��
� � ��� ��� �� �� ��
�� � �� �� ! ! ��

are simple modi�cations of Strategy B� In Strategy C the �cuto�s� for Rules � and
� are set at levels � and �
 respectively
 and in Strategy D the cuto�s are set at
levels � and �
 respectively� In general the use of Rules � and � deeper in the tree
is appropriate for larger
 more di�cult problems�

� COMPUTATIONAL RESULTS

In this section we describe the performance of our B�B algorithm on a set of QAP
test problems from QAPLIB ���� We begin with a small example that illustrates
the e�ect of di�erent branching strategies� We consider the problem scr��
 and
implement our B�B algorithm using branching strategies A and B
 as described in
the previous section� The results are given in Table �� In the table the entries in
the �Fthm�� column give the fraction of the nodes at each level that were fathomed�
For the remaining unfathomed nodes
 the entries in the �Elim�� column give the
fraction of the potential child nodes that were eliminated� For example
 using
strategy B
 ��" of the nodes on level � were fathomed
 and ��" of the potential
children of the unfathomed nodes were eliminated� Note that for both strategies
the number of level � nodes is �
 rather than ��
 due to symmetry in the distance
matrix for the problem� Using rules � and � for the top few levels of the tree
 in
Strategy B
 incurs extra time at those levels compared to Strategy A
 but pays o�
handsomely in greatly reducing the size of the tree� Note that the total number
of nodes required using Strategy A is higher by a factor of over ��
 and the total
time is higher by a factor of about ��� All times in the table are CPU seconds on
an HP���� C���� workstation� In our implementation QAP subproblems of size
n � � are solved by enumeration for scr�� this occurs on level ���
Below we give computational results that compare the performance of our algo�

rithmwith several other recent B�B algorithms for the QAP� We consider a number
of �medium to large� ��� 	 n 	 ��� problems from QAPLIB ��� that are commonly

�� N�W� BRIXIUS AND K�M� ANSTREICHER

TABLE �� Comparison of branching strategies on scr�

Branching Strategy A Branching Strategy B

Level Nodes Fthm� Elim� Time Nodes Fthm� Elim� Time

� � ���� ���� ���� � ���� ���� ����
� � ���� ���� ���� � ���� ���� �����
� ��� ���� ���� ���� �� ���� ���� �����
� �
��� ���� ���� ����� ��� ���� ���� ����
� �
��� ���� ���� ����� ��� ���� ���� ����
� ��
��� ���� ���� ������ ��� ���� ���� ����
� ��
��� ���� ���� ������ ��� ���� ���� ����
� ��
��� ���� ���� ������ ��� ���� ���� ����
� ��
��� ���� ���� ����� �� ���� ���� ����
� �
��� ���� ���� ���� � ���� ���� ����

�� ��� ���� ���� ���� � ���� ���� ����
�� � ���� ���� ���� � ���� ���� ����
�� � ���� � ����

Total ���
��� ������ �
��� �����

used as benchmarks� In applying our algorithm we choose one of the branching
strategies �A
 B
 C
 or D� described in the previous section
 based on the size and
di�culty of the problem� In Table � we give the number of nodes required in the
B�B tree for the optimal solution of each problem using our algorithm �BA�� In
each case the initial incumbent value v is set to the optimal objective value of the
problem plus one� �For many of these problems the optimal objective value was �rst
proved optimal within the last � years�� With this incumbent value the algorithm
cannot fathom any node on a path that leads to an optimal solution
 so the B�B
algorithm must complete one �dive� in the tree that leads to an optimal permuta�
tion� For comparison we give the number of nodes required by the B�B algorithms
of Clausen and Perregaard �CP� ����
 Br#ungger et al� �BMCP� ���
 Hahn
 Grant
and Hall �HGH� ����
 and Hahn et al� �HHJGR� ����� The results from CP and
BMCP use the same GLB�based algorithm the results for nug��b �� �� are from
CP
 and for the remainder of the problems are from BMCP� HGH and HHJGR both
use the dual�LP bound of ���� �see also �����
 but HHJGR uses more sophisticated
branching rules� The HHJGR results for had�� and nug�� were provided by Hahn
�private communication��
From Table � it is clear that in terms of nodes our results are far superior to the

GLB�based results of CP BMCP
 and are of the same order of magnitude as the
node counts fromHGH HHJGR on all problems except rou��� However
 since GLB
can be computed much more rapidly than either our QP�based bound
 or the dual�
LP bound used by HGH HHJGR
 a consideration of the total CPU time required
for the di�erent methods is required� Because of advances in hardware
 and the use

SOLVING QUADRATIC ASSIGNMENT PROBLEMS ��

TABLE 	� Comparison of nodes for B�B algorithms on QAPLIB problems

Problem Strategy BA CP BMCP HGH HHJGR

had�� A �
��� ��
���
��� ��
��� �
���
had�� A ���
��� ���
���
��� ���
��� ��
���
had�� A ���
��� �
���
���
���
nug��b B �
��� ���
���
nug�� C ���
��� ���
���
��� ���
���
nug�� C �
���
��� ���
���
��� ���
��� ���
���
nug�� C �
���
��� �
���
���
��� �
���
���
nug�� C �
���
��� ��
���
���
�� ��
���
��� ���
���
nug�� D ��
���
��� ��
���
��
rou�� D ��
���
��� �
���
���
��� �
���
���
tai��a C ���
��� ��
���
���
tai��a D ��
���
��� �
���
���
���

of parallel machines for some references
 raw CPU times must be adjusted with care
to make a sensible comparison� Our times are obtained on a single
 lightly loaded
HP���� C���� workstation� In comparing our times to the results of CP BMCP
and HGH HHJGR the raw times reported in these papers are adjusted as follows�

HHJGR�Times in this paper were obtained on a ��� MHz Sun UltraSparc work�
station� Based on the SPECint�� �gure of ���� for this machine
 versus ���� for
the HP���� C����
 the times reported in ���� were divided by ��

HGH�Times in this paper were obtained on a �� MHz Sun SuperSparc� Based
on information provided by Hahn �private communication�
 the UltraSparc used
by HHJGR is approximately � times as fast as this machine on the QAP B�B
application� Consequently the times reported in ���� were divided by ��

CP�Times in this paper were obtained on a ���processor MEIKO computing sys�
tem� It is reported in ���� that the ���processor system provides an e�ective
�speed�up� of about �� over the use of one processor
 and a single processor in the
MEIKO system requires ��� times as much time as an HP���� ��� workstation
on the same application� Using a factor of ��� to convert to the HP���� ���

the raw times in ���� times � would give approximate run times on a single
HP���� ���� This HP machine appears to be comparable in performance to the
Sun SuperSparc used in ���� �SPECint�� �gures are ���� for the HP and ���� for
the Sun�� Thus the raw times in ���� are approximately equal to the serial time
on the Sun UltraSparc used by HHJGR
 and these times were divided by two to
convert to the HP���� C�����

BMCP�Times in this paper were obtained on NEC Cenju�� and Intel Paragon
XP S�� multi�processor systems� The only information available for the per�
formance of individual processors in these systems are MFLOP rates of �� for

�	 N�W� BRIXIUS AND K�M� ANSTREICHER

TABLE
� Equivalent CPU time �m� on QAPLIB problems

Problem BA CP BMCP HGH HHJGR

had�� ��� ���� ��� ���
had�� ���� ����� ���� ���
had�� ���� ��
�����
nug��b ��� ���
nug�� ���� ����� ����
nug�� ����� ����� ����� �����
nug�� ����� �
����� �
�����
nug�� ����� ���
����� �
����� �
�����
nug�� ������ �
�����
rou�� ������ �
����� �
�����
tai��a ����� ����
tai��a ������ ��
�����

the NEC
 and �� for the Intel� The number of processors used to solve di�erent
problems varied between �� and ��� Times were converted by assuming a par�
allel utilization factor of ���� �as also used in �����
 converting to serial time on
the Sun SuperSparc based on that machine$s MFLOP rate of ����
 and �nally
dividing by � to convert to the HP���� C�����

In Table � we give the CPU time �in minutes� required by our algorithm
 and
equivalent times for the B�B algorithms of CP BMCP
 HGH
 and HHJGR on
the same problems
 obtained as described above� Clearly the adjustment is most
di�cult for the BMCP times
 but even there the adjusted times appear to be quite
reasonable� Note
 for example
 that the ratio of the nodes required for nug�� �from
BMCP� compared to nug�� �from CP� is ����
 compared to a ratio of equivalent
times of ����� It is to be expected that the time ratio would be somewhat greater
than the node ratio
 because the problems at each level of the tree are larger�
Table � indicates that the performance of our algorithm on most larger prob�

lems is far superior to the GLB�based results of CP BMCP
 and is competitive
with the state�of�the�art dual�LP based results of HHJGR� It should be noted that
the results reported here for our algorithm do not use highly optimized branching
strategies� In particular
 by using more complex problem�speci�c branching strate�
gies we can reduce both the nodes and time required by our algorithm� However
our results indicate that even with simple branching strategies the performance of
our algorithm on di�cult problems is highly competitive�
In Figure � we illustrate the equivalent times from Table � for the nugxx problems

of size �� to ��
 using a logarithmic time scale� Exponential growth is evident for
all four series
 but the rate of growth for our results appears to be lower than for
the other algorithms� �We believe that the trend for our times is best represented
if our result for nug��
 which is exceptionally good
 is ignored�� This observation

SOLVING QUADRATIC ASSIGNMENT PROBLEMS �

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

18 19 20 21 22 23 24

n

C
P

U
 M

in
. (

H
P

 C
30

00
)

CP/BMCP
HGH
HHJGR
BA

FIGURE �� Equivalent times to solve nugxx problems

suggests that our algorithm may perform well on problems even larger than those
considered here
 particularly if more complex branching rules are employed� In
order to obtain reasonable solution times for problems of size n � �� we have
implemented our algorithm using the Master�Worker �MW� distributed processing
system ����� Details of the MW implementation and computational results on larger
problems are reported in ����

REFERENCES

�� K�M� Anstreicher ������� Eigenvalue bounds versus semide�nite programming for the
quadratic assignment problem� SIAM J� Optimization� ��� �
	���
�

�� K�M� Anstreicher and N�W� Brixius ������� A new bound for the quadratic assignment
problem based on convex quadratic programming�Mathematical Programming� ��� �	���
�

�� K�M� Anstreicher� N�W� Brixius� J��P� Goux� and J� Linderoth ������� Solving large quadratic
assignment problems on computational grids� Mathematical Programming� to appear�

	� K�M� Anstreicher and H� Wolkowicz ������� On Lagrangian relaxation of quadratic matrix
constraints� SIAM J� Matrix Analysis and Applications� ��� 	��

�

� M�S� Bazaraa and O� Kirca ������� A branch�and�bound based heuristic for solving the
quadratic assignment problem� Naval Research Quarterly� ��� �����	�

�� A� Br�ungger� A� Marzetta� J� Clausen� and M� Perregaard ������� Solving large�scale QAP
problems in parallel with the search library ZRAM� Journal of Parallel and Distributed

Computing� ��� �
�����

� R�E� Burkard� E� C�ela� P�M� Pardalos� and L�S� Pitsoulis ������� The quadratic assignment
problem� In D��Z� Zhu and P�M� Pardalos� Editors�Handbook of Combinatorial Optimization�
Vol� �� Kluwer�

�� R� Burkard and U� Derigs ������� Assignment and Matching Problems� Solution Methods

with FORTRAN Programs� Springer� Berlin�

�� N�W� BRIXIUS AND K�M� ANSTREICHER

�� R�E� Burkard� S� Karisch� and F� Rendl ������ QAPLIB � A quadratic assignment problem
library� J� Global Optimization� ��� ����	���

��� E� C�ela ������� The Quadratic Assignment Problem� Theory and Algorithms� Kluwer�
��� J� Clausen� S�E� Karisch� M� Perregaard� and F� Rendl ������� On the applicability of lower

bounds for solving rectilinear quadratic assignment problems in parallel� Computational Op�
timization and Applications� ��� ����	�

��� J� Clausen andM� Perregaard ������ Solving large quadratic assignmentproblems in parallel�
Computational Optimization and Applications� �� ��������

��� J� Crouse and P� Pardalos ������� A parallel algorithm for the quadratic assignment problem�
Proceedings of Supercomputing ���� ACM Press� �
������

�	� G� Finke� R�E� Burkard� and F� Rendl ������ Quadratic assignment problems� Annals of

Discrete Mathematics� ��� ������
�
� M� Frank and P� Wolfe ���
��� An algorithm for quadratic programming� Naval Research

Logistics Quarterly� �� �
�����
��� J��P� Goux� J� Linderoth� and M� Yoder ������� Metacomputing and the master�worker

paradigm� Preprint ANL�MCS�P�������� MCS Division� Argonne National Laboratories�
Chicago� IL�

�� A� Graham ������� Kronecker Products and Matrix Calculus� with Applications� Ellis Hor�
wood� Chichester�

��� P� Hahn and T� Grant ������� Lower bounds for the quadratic assignment problem based
upon a dual formulation� Operations Research� ��� ��������

��� P� Hahn� T� Grant and N� Hall ������� A branch�and�bound algorithm for the quadratic
assignment problem based on the Hungarian method� European Journal of Operational Re�

search� ���� �����	��
��� P�M� Hahn� W�L� Hightower� T�A� Johnson� M� Gugnard�Spielberg� and C� Roucairol �������

Tree elaboration strategies in branch and bound algorithms for solving the quadratic as�
signment problem� Dept� of Systems Engineering� University of Pennsylvania� Philadelphia
PA�

��� S�W� Hadley� F� Rendl� and H� Wolkowicz ������� A new lower bound via projection for the
quadratic assignment problem�Mathematics of Operations Research� �	� �����

��� R�A� Horn and C�R� Johnson �������Topics in Matrix Analysis� Cambridge University Press�
Cambridge�

��� R� Jonker and A� Volgenant ������ A shortest augmenting path algorithm for dense and
sparse linear assignment problems� Computing� ��� ��
��	��

�	� V� Kaibel ������� Polyhedral Methods for the QAP� In P�M� Pardalos and L� Pitsoulis�
Editors� Nonlinear Assignment Problems� Kluwer�

�
� S�E� Karisch� E� C�ELA� J� Clausen� and T� Espersen ������� A dual framework for lower
bounds of the quadratic assignment problem based on linearization� Computing� ��� �
��
	���

��� S�E� Karisch and F� Rendl ����
�� Lower bounds for the quadratic assignment problem via
triangle decompositions�Mathematical Programming� 	�� ����
��

�� J�T� Linderoth and M�W�P� Savelsbergh ������� A computational study of search strategies
in mixed integer programming� INFORMS J� Computing� ��� ������

��� A� Marzetta and A� Br�ungger ������� A dynamic�programming bound for the quadratic
assignment problem� In T� Assano et al�� Editors� COCOON���� Lecture Notes in Computer

Science� ���	� pp� �����	�� Springer� Berlin�
��� T� Mautor and C� Roucairol ����	�� A new exact algorithm for the solution of quadratic

assignment problems� Discrete Applied Mathematics� ��� ��������
��� M�W� Padberg and M�P� Rijal ������� Location� Scheduling� Design and Integer Program�

ming� Kluwer�
��� P� Pardalos� F� Rendl� and H� Wolkowicz ����	�� The quadratic assignment problem� A

survey and recent developments� In Quadratic Assignment and Related Problems� DIMACS

Series in Discrete Mathematics and Theoretical Computer Science� ��� pp� ��	�� American
Mathematical Society�

SOLVING QUADRATIC ASSIGNMENT PROBLEMS �

��� P�M� Pardalos� K�G� Ramakrishnan� M�G�C� Resende� and Y� Li ������ Implementation of
a variance reduction�based lower bound in a branch�and�bound algorithm for the quadratic
assignment problem� SIAM J� Optimization� 	� ������	�

��� D�E� Stewart and Z� Leyk ����	�� Meschach� Matrix computations in C� Proceedings of the

Center for Mathematics and its Applications� ��� The Australian National University�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

