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We describe a branch-and-bound algorithm for the quadratic assignment problem (QAP) that
uses a convex quadratic programming (QP) relaxation to obtain a bound at each node. The
QP subproblems are approximately solved using the Frank-Wolfe algorithm, which in this case
requires the solution of a linear assignment problem on each iteration. Our branching strategy
makes extensive use of dual information associated with the QP subproblems. We obtain state-
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1 INTRODUCTION

The quadratic assignment problem (QAP) in “Koopmans-Beckmann” form is

QAP(A,B,C): min tr(AXB 4 C)X7
st. X ell,

where A, B and C' are n X n matrices, tr denotes the trace of a matrix, and II is
the set of n x n permutation matrices. Throughout we assume that A and B are
symmetric. In a typical location application a;; is the flow between facilities ¢ and
J, by 18 the distance between locations k& and [, and ¢;; 1s the fixed cost of assigning
facility ¢ to location k.

It is well known that QAP(A, B, C) is an NP-Hard problem; for example combi-
natorial optimization problems such as traveling salesman and graph partitioning
can be formulated as QAPs. Moreover QAPs have proven to be extremely difficult
to solve to optimality in practice. General problems with n = 20 are challenging,
and several problems with n = 30 have been open for as long as 30 years. For recent



2 N.W. BRIXIUS AND K.M. ANSTREICHER

surveys which include the history and applications of the QAP and a discussion of
solution methods see [7], [10], and [31].

The usual approach to optimally solving QAP(A, B, C) is to employ a branch-
and-bound (B&B) algorithm. (See [24] and [30] for alternatives based on polyhedral
theory.) Early papers reporting results of B&B algorithms for QAP include [5],
[8], [13], and [29]. The most important element in the construction of a B&B
algorithm for the QAP appears to be the method used to obtain a bound for the
subproblem (itself a lower-dimensional QAP) at each node of the B&B tree. Most
B&B algorithms for the QAP have utilized the well-known Gilmore-Lawler bound
(GLB). In [32] the GLB and a related “variance reduction” bound are used in a
B&B algorithm to solve to optimality a variety of test problems up to size n = 20.
Using a B&B algorithm based on GLB, and high-performance computing hardware,
Clausen and co-workers [6, 12] solved to optimality problems up to size n = 32, the
most difficult being the nug22 problem. (All problem names, such as nug22, are
taken from QAPLIB [9].) The larger nug25 problem was subsequently solved [28]
using a bounding approach based on dynamic programming.

Other bounds for the QAP include bounds based on a linear programming (LP)
relaxation of the problem, and bounds based on eigenvalues of A and B. As shown
in [25] a number of known bounds for QAP including the GLB, can be obtained
from feasible solutions for the dual of an LP relaxation. The best published B&B
results using such dual-LP bounds are due to Hahn et al. [19]. In recent work
[20] the approach of [19] is refined and used to obtain the best results to date on
the difficult nug24 and nug25 problems, as well as the first solution of the kra30a
problem.

Eigenvalue-based bounds for the QAP are described in [14] and [21]. Results
in [11] show that the “projected eigenvalue bound” PB(A, B,C) of [21] may be
competitive with GLB in a B&B algorithm. Results in [11] on the applicability of
the “triangle decomposition bound” of [26] are much less encouraging.

A new bound for QAP(A, B, ) based on convex quadratic programming (QP)
is described in [2]. The new bound, QPB(A, B, () is related to the projected eigen-
value bound PB(A4, B, (). The construction of QPB(A, B, (') utilizes a semidefinite
programming (SDP) representation of the basic eigenvalue bound of [14], from [4].
In this paper we consider a complete B&B algorithm for the QAP based on the use
of the QP bound at each node of the B&B tree. The lower bound QPB(A, B, ) is
reviewed in Section 2. In Section 2 we also decribe an approach based on the Frank-
Wolfe (FW) algorithm that we use to approximately solve the convex quadratic
program associated with QPB(A, B, C'). The FW algorithm generates dual infor-
mation that can be used to estimate the effect of fixing an assignment z;; = 1 to
create a “child” problem at a node in the B&B tree. Our branching rules, described
in Section 3, make extensive use of this dual information. In Section 4 we give com-
putational results on a variety of problems of size n > 15 from QAPLIB. We obtain
state-of-the-art results on many problems, including instances of the famous nugxx
problems up to size n = 24.

Notation. We use tr A to denote the trace of a square matrix A, and A e B =
tr(ABT). For symmetric matrices A and B we use B > A to denote that B — A
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is positive semidefinite, and B = A to denote that B — A is positive definite. We
use e to denote a vector of arbitrary dimension with each component equal to one.
The Kronecker product of matrices A and B is denoted A® B. For an n x n matrix
X, vec(X) denotes the vector in Rn” obtained by stacking the columns of X atop
one another, in the natural order. See [17] or [22] for basic properties of Kronecker
products and vec(:). For an n x n symmetric matrix A, A(4) € %" denotes the
vector of eigenvalues of A.

The “minimal product” of two vectors # and y in " is denoted (z,y)_, and is

defined by
<$a y>— = H%TIHZ xiyﬂ'(i)a
i=1

where 7(-) is a permutation of 1,2, ..., n. It is easy to show that if z; <z < ... <
Tn,and y; > ys > ... >y, then (z,y)_ = 2Ty.

Throughout the paper we use the convention of letting the name of an opti-
mization problem, such as QAP(A, B, ('), also refer to the solution value of the
problem.

2 THE QUADRATIC PROGRAMMING BOUND

We use the convex QP bound for QAP(A, B,C) described in [2]. Let V be an

n x (n—1) matrix with orthonormal columns such that eV = 0, and define
A=VTAV, B=VTBV. The bound is defined as
QPB(A, B,C) : min  vec(X)TQvec(X) 4+ Ce X + </\(A), /\(B)>_
st. Xe=XTe=e
X >0,

where @ is a matrix of the form @ = (B ® A) — (I ® S) — (T'@ I). The matrices
S and T are of the form S = VSVT, T = VIVT, where S and 1" are optimal
solutions of the semidefinite programming problem
SDD(A,B) : max trS+tr7
st. (I@S)+(Tol)=<(BaA).
It is known [4] that SDD(A, B) = (A(A),\(B))_, and as shown in [2, Section 4]
optimal S, T' can easily be obtained from the spectral decompositions of A and B.

The quadratic programming bound QPB(A, B, () is related to the projected
eigenvalue bound [21]

PB(A, B, C) = (A\(A), \(B))_ + LAP(D) — n—lz(eTAe)(eTBe),

where D = C + Aeel B and LAP(D) is the linear assignment problem with cost
matrix D. By construction (see [2, Section 3])

PB(A, B,C) < QPB(A, B,C) < QAP(A4, B,C),
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and [2, Lemma 1] PB(A, B,C) < QPB(4, B,C) if PB(4, B,C) < QAP(A, B,C)
and the solution of LAP(D) is unique.
The constraints Xe = X7e = ¢ may be written in the form F vec(X) = e, where

el oI
F= ( . eT) |
Tt is easy to show that the columns of V@V are a basis for the nullspace of F' (see for
example [1, Lemma 3.3]). Tt then follows from the definition of @, and the fact that
S and T are feasible for SDD(A, B), that (VT @VT)Q(VeV) > 0, or equivalently
is positive semidefinite on the nullspace of F'. Therefore QPB(A, B, () is a convex
quadratic programming problem.

In [2], QPB(A, B, () is computed using an interior-point algorithm. This ap-
proach allows for a high-accuracy solution, but for the dimensions of interest to us
would be too time-consuming for use in a branch-and-bound context. The method-
ology we employ here is to approximately solve QPB(A, B, (') using the well-known
Frank-Wolfe (FW) algorithm [15]. Although the FW algorithm is provably globally
convergent, the method is known to have poor asymptotic performance. This is
not of great concern to us since QPB(A, B, (') is only being used to obtain a bound
on QAP(A, B,C). An excellent feature of the FW algorithm in our application is
that the work on each iteration is dominated by the solution of a linear assignment
problem (LAP), which can be performed extremely rapidly.

Let f(X) = vec(X)TQvec(X) +C e X + </\(A), /\(B)>_, and let

G=G(X)=2AXB - SX — XT) + C (1)
denote the gradient of f(-) at X,

9f(X)
3Xij '

Gij(X) =

Each iteration k& > 0 of the FW algorithm begins with a feasible solution X for
QPB(A4, B,C). Let Gy = G(Xk), and let X} be an optimal solution of LAP(Gy).
The algorithm then takes a step of the form

X1 = Xi + (X — Xi), (2)

where 0 < o < 1 is chosen so as to minimize f(Xj41). Note that since f(-) is
quadratic the computation of the minimizing « is trivial. Substituting (2) into (1),
we find that

Gip1= (1 — )Gy +a[2(AXB - SX;, — X;T)+ Cl.
Since X} is always a permutation matrix, the O(n®) work on an iteration of the FW

algorithm can be reduced to a single matrix multiplication (to compute AX; B),
and the solution of one linear assignment problem.
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FIGURE 1: FW iterations on nug20 root problem

Associated with an optimal solution X; of LAP(Gy) is a matrix of “reduced
costs” Uy, such that for any X with Xe = X7Te = e,

GkOX:LAP(Gk)—I—Uk * X. (3)

Since f(-) is convex on the nullspace of F',| for any X feasible in QAP(A, B, () we
have

X)) > f(Xk)+Gre (X = Xy) (4)
= [f(Xg)—GreXp+LAP(Gr)+ Ui e X
= f(Xp)+Gre(X;— X))+ UseX
= 5+ UreX, (5)
where
2 = f(Xi) + Ge( X — Xi) = f(Xg) — Uk 0 Xy, (6)

and the second equality in (6) follows from (3) and the fact that U ¢ X} = 0. Since
Ui eX >0 forany X > 0, (5) implies that on each iteration k of the FW algorithm
we have a lower bound z; < QPB(A, B,C) < QAP(A, B,C).

In Figure 1 we illustrate the behavior of the FW algorithm in approximately
solving the problem QPB(A, B, C) associated with the nug20 QAP. The algorithm
is initialized at Xo = (1/n)ee?. In the figure we plot the sequence of upper bounds
(UB) vy = f(Xk), and lower bounds (LB) z, & > 0. Note that the lower bounds
are clearly non-monotonic (in particular z; < zp) and the asymptotic behavior
appears to be poor, as expected. On the other hand the lower bound z; obtained
after about & = 100 FW iterations is a reasonable approximation of QPB(A4, B, ().
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On a fast workstation z1gp can be obtained for a problem with n = 20 in less than
0.1 seconds of CPU time.

For the nug20 problem the initial bound z, generated by the FW algorithm is
2178.3, which is precisely the value of the projected eigenvalue bound for the same
problem. This is not a coincidence, as demonstrated in the following lemma.

Lemma 2.1. Suppose that the Frank- Wolfe algorithm is applied to QPB(A, B, ()
with the initial solution Xo = (1/n)ee’. Then 2o = PB(A, B, ().

Proof. From (1),

G = g (AeeTB — Seel — eeTT) +C = Z(AeeTB) +C,
n n

because S = V§VT, T = VTVT, and ¢V = 0. Similarly

f(Xo) = Vec(Xo)TQ vec(Xy) + C e Xg + </\(A), /\( A)>_
_|_

= tr(AXoBX? — SXoX] — XoTX{) + (A(A), A\(B))—

= % tr(Aee” BeeT) + C o Xo + (A(A), \(B))_

= %(eTAe)(eTBe) +C o Xo+ (A(A),\(B))-

Let D = Go = C + (2/n)Aee” B. From (6) we then have
Zo = f(X0)+LAP(D) —GQOXQ
= </\(/1), /\(B)>_ +LAP(D) + iz(eTAe)(eTBe) — 2(AeeTB) e X,
n n

(MA), \(B))_ + LAP(D) — %(eTAe)(eTBe)
PB(A, B, C).

a
The behavior illustrated in Figure 1 is typical in our experience. When ini-
tialized at Xy = (1/n)ee’, the bound z; drops sharply from the inital value
zo = PB(A, B,C), and the bound sequence zp, & > 1 then increases relatively
steadily. We have experimented with alternative initializations for the FW algo-
rithm, and schemes for enforcing monotonicity on the bound sequence, but none
of these efforts have produced reliable improvements in the overall performance of
the algorithm.
In practice we make a small modification of the FW procedure described above
based on the use of a matrix G < G. Since X > 0 for any feasible X, it follows
from (4) that

)—|—GkOX GkOXk
UkoX,

J(X)

v
2
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where Ug > 0 is the matrix of reduced costs from LAP(Gk),
Zr = </\(A), /\(B)>_ + f(Xk) —Gpe X, + Gk . Xk,

and )N(k 1s an optimal solution of LAP(ék). By using a matrix ék in place of Gy
we can restrict the LAP solved on each FW iteration to have integer data. In
particular, if

~ 1
Gy = g—LngkJ,
&

where 6 is a positive scaling factor, then G < Gy, LAP(Gk) =(1/0y) LAP(Gka),
and Hkék is an integer matrix. By using a larger value of 8, LAP(Gk) becomes
a better approximation of LAP(Gy), but the time to solve LAP(GGk) typically
increases. (It is well known that the time to solve a LAP with integer data is
sensitive to the scale of the data.) In addition to providing a speed improvement, the
use of LAPs with integer data prevents roundoff error and improves the robustness
of our algorithm. In our implementation each integer LAP is solved using the
well-known augmenting path algorithm of [23], chosen for its excellent performance
on small dense LAPs (see [23]) as encountered in our application. The spectral
decompositions required for the construction of QPB are performed using routines
from the Meschach library [33].

3 BRANCHING STRATEGY

In our branch-and-bound implementation we employ “polytomic” branching, as
introduced for QAP in [29] and used in numerous subsequent implementations.
At a given node there is a set of fixed assignments X; r;y = 1,1 € I. Let N =
{1,2,..,n}, J={rn(@)|i€ I}, I =N\I,J=N\J. If the node is not fathomed,

we generate children according to one of the following schemes:

Row Branching.Fix i € I. Generate a child problem for each j € J for which the
problem with X;; = 1 cannot be eliminated.

Column Branching.Fix j € J. Generate a child problem for each i € I for which
the problem with X;; = 1 cannot be eliminated.

In both of the above cases the elimination of children is based on the dual matrix
U or U described in the previous section. For simplicity we assume throughout
this section that LAP(Gy), rather than LAP(ék), is solved on each iteration k of
the FW algorithm (see the previous section for the distinction). The modifications
required when G is used are straightforward. Consider the root node, and let
v denote the incumbent objective value; that is, the objective value for the best
known feasible solution of QAP(A, B,C). Let z = zj, denote the lower bound (6)
produced after k FW iterations, and let /' = Uy be the corresponding reduced cost
matrix. Since U > 0 and X > 0, (5) implies that if z + u;; > v, then no solution
with X;; = 1 can have objective value less than v, and therefore this potential
child can be eliminated. Using U in this way is similar to the use of the matrix of
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reduced costs associated with the “master” LAP for the GLB to eliminate potential
children, as in [29].

We next describe several different rules that we employ in choosing the row i or
column j on which to branch. For simplicity we first describe all the rules in terms
of row branching. Column branching, and the treatment of problem symmetries,
are described later. The rules are specified as they would be implemented at the
root node (f =J= ). At an arbitrary node in the tree the problem is of the form
QAP(A’, B',C") where the matrices A’, B’, C" are all of dimension n — ||, and the
implementation of branching rules is similar.

Our first two branching rules use the information in U to try to increase the
child bounds as much as possible, or alternatively minimize the number of children
created.

Rule 1.Branch on the row ¢ that has the highest value of ZjeN Ui;.

Rule 2.Branch on the row 7 that produces the smallest number of children. In the
event of a tie, choose the row with the largest value ZjeN’ Us;, where N/ = {j €

Nz +u; < vl

Note that the set N/ in Rule 2 consists exactly of the child problems with X;; =1
that cannot be eliminated. Rule 2 is a straightforward analog of the branching rule
used in [29], and is effective in reducing the size of the tree for small problems.
We make extensive use of Rule 2 once we are deep enough in the tree so that a
non-trivial fraction of the children can be eliminated. At lower depths in the tree
on large problems, however, it is typically the case that no children can be elimi-
nated. In this case we also consider branching rules that obtain more information
by “prospectively” setting X;; = 1, and computing QPB for the associated QAP
problem of dimension n — 1, before making the final decision of where to branch.
This is analogous to the well-known technique of “strong branching” for integer
and mixed-integer linear programming, see for example [27].

Rule 3.Let 77 denote the set of rows having the k1 highest values of ZjeN Ui;.

For each i € I1, and j € N, compute a lower bound 2% = z;‘l by forming the
reduced problem QAP(A’, B’,C") corresponding to X;; = 1, and approximately
solving QPB(A’, B, C") using ky FW iterations. Branch on the row i € I} having
the highest value of 5.\ 217

In Rule 3 the 2% values are only computed for a subset of the k; most promising
rows, based on Rule 1. The purpose of this restriction is to economize the time
required to compute the 2. In addition, the number of FW iterations ks used
to compute the 2% bounds is typically less than the number of iterations used to
compute the lower bound z at the current node, again to reduce the computation
time.

Our final rule i1s an elaboration of Rule 3. Note that when a prospective bound
#1J is computed in the course of Rule 3, there is an associated dual matrix U/,
of dimension n — 1. Rule 4 is based on applying Rule 1 to each of these matrices
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FIGURE 2: Grid for distances in nug06 QAP
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U%. Rule 4 can be thought of as a “look-ahead” branching rule, where we try to
maximize the total increase in the bounds after 2 levels of branching.

Rule 4.Let 77 denote the set of rows having the k1 highest values of ZjeN Ui;.

For each i € I1, and j € N, compute a lower bound 2% = z;‘l by forming the
reduced problem QAP(A’, B’,C") corresponding to X;; = 1, and approximately
solving QPB(A’, B/, (') using ks FW iterations. Let U% be the reduced cost
matrix associated with 2%/, Let v be the maximal row sum of U% and let
w = (|[N| - 1)2% + v%. Branch on the row i € I; having the highest value of

Zjer”.

In practice we implement Rules 1-4 in a somewhat more complex fashion than
described above. In particular, we consider column branching as well as row branch-
ing, and symmetries in the problem data. Below we describe the details associated
with these extensions.

Symmetry. Many QAP problems arise from applications where the distance ma-
trix B exhibits symmetries that can be exploited to reduce the number of child
problems generated in the branching process. Logic for exploiting such symmetries
was introduced in [29], and has been used in many subsequent branch-and-bound
implementations. In a problem with symmetries there is a subset of the locations
J1 such that without loss of generality the children of the root problem can be
restricted to be of the form X;; = 1, j € Jy, regardless of the row 7. In addition,
there may be one or more pairs of subsets of locations {Js, J3} so that if at any node
in the tree the set of fixed locations .J satisfies J C Jo, then the children can be
restricted to be of the form X;; = 1, j € J3, regardless of the choice of 1 € I. For a
simple example consider the problem nug06. The distance matrix for this problem
corresponds to the [y distances on a 2 x 3 rectangular grid, as shown in Figure 2.
In this case we may take J; = {1,2}, J, = {2,5}, Js = {1,2,4,5}. Larger problems
may have more than one pair of {J2, J3} subsets. At a node where symmetry can
be exploited we consider only row branching, and replace the index set N used in
the branching rules with an appropriate J C N.

Column Branching. When symmetry is not present at a node we consider column
branching as well as row branching. The modifications to the branching rules are
straightforward. For Rule 1 we choose the row ¢ with the highest row sum from
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U, or the column j with the highest column sum, whichever is higher. For Rule 2
we branch on the row or column which produces the smallest number of children.
For Rule 3 we choose the k; most promising rows and ki most promising columns,
compute all the required 2”7 bounds, and then choose the row or column with
the highest sum. Rule 4 is similar, with v"/ corresponding to the maximal row or
column sum of /%,

To completely specify the above branching rules a number of parameters must
be chosen. These are:

NFW1. Maximum number of FW iterations used.
NFW2. Maximum number of FW iterations used if node cannot be fathomed.

NFW3. Number of FW iterations used for prospective bound computations (Rules
3 and 4 only; same as ks in description above).

NBEST. Number of rows/columns in which to compute prospective bounds (Rules
3 and 4 only; same as ky in description above).

UPDATE. Number of FW iterations between update of dual matrices S, T

We now give some details regarding these parameters. On each FW iteration we
obtain an objective value v, = f(X%) and lower bound z;. If z; > v the current
node can be fathomed, and the FW process is terminated. On the other hand if
vg < v then we know that the lower bound from QPB will not be high enough to
fathom the current node. By setting NFW2<NFW 1 we allow for earlier termination
in the latter case. (Note however that even when a node cannot be fathomed it
is desirable to compute a reasonably accurate bound z for branching purposes.)
The complete logic for the number of FW iterations is then that we terminate on
iteration k if z; > v, or v* < v and k > NFW2, or k=NFW]I.

As described in the previous section, QPB(A, B, C') involves the choice of matrices
S, T that are optimal in SDD(A, B) Such an optimal solution is not in general
unique, and different choices of S, 7' may produce different values of QPB(A, B,C).
Given a choice of S, T, and an approximate solution X of QPB(A, B, (), a simple
procedure is described in [2, Section 6] that attempts to generate a new dual optimal
solution that will increase QPB(A, B, C'). We apply one step of this procedure every
UPDATE FW iterations, using the current primal solution Xy as the basis for the
update.

In general we combine the 4 different branching rules given above, with suitable
parameter choices, to obtain a complete branching strategy. In the implementation
described here the choice of branching rule is based on depth in the tree, that is, the
number of fixed assignments |I|, and the tree is traversed using depth-first search
[27]. Our simplest branching strategy, Strategy A, is shown in Table 1. Strategy
A uses Rule 2, with NFW1=150, NFW2=100, updating the dual matrices every
30 FW iterations, for all levels in the tree (note that with polytomic branching the
maximum level in the tree is n). A more complex branching strategy, Strategy B, is
given in Table 2. Strategy B uses Rule 4 on levels 0 and 1 of the tree, Rule 3 on level
2, and Rule 2 at all higher levels. In the next section we consider computational
results obtained using Strategies A and B, and two more strategies C and D that
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TABLE 1: Branching strategy A

Depth  Rule NFW1 NFW2 NFW3 NBEST UPDATE
50 2 150 100 - - 30

TABLE 2: Branching strategy B

Depth  Rule NFW1 NFW2 NFW3 NBEST UPDATE

1 4 150 100 50 20 30
2 3 100 100 25 10 30
50 2 75 50 - - 30

are simple modifications of Strategy B. In Strategy C the “cutoffs” for Rules 4 and
3 are set at levels 1 and 3, respectively, and in Strategy D the cutoffs are set at
levels 2 and 4, respectively. In general the use of Rules 3 and 4 deeper in the tree
is appropriate for larger, more difficult problems.

4 COMPUTATIONAL RESULTS

In this section we describe the performance of our B&B algorithm on a set of QAP
test problems from QAPLIB [9]. We begin with a small example that illustrates
the effect of different branching strategies. We consider the problem scrl5, and
implement our B&B algorithm using branching strategies A and B, as described in
the previous section. The results are given in Table 3. In the table the entries in
the “Fthm.” column give the fraction of the nodes at each level that were fathomed.
For the remaining unfathomed nodes, the entries in the “Elim.” column give the
fraction of the potential child nodes that were eliminated. For example, using
strategy B, 23% of the nodes on level 3 were fathomed, and 70% of the potential
children of the unfathomed nodes were eliminated. Note that for both strategies
the number of level 1 nodes 1s 9, rather than 15, due to symmetry in the distance
matrix for the problem. Using rules 4 and 3 for the top few levels of the tree, in
Strategy B, incurs extra time at those levels compared to Strategy A, but pays off
handsomely in greatly reducing the size of the tree. Note that the total number
of nodes required using Strategy A is higher by a factor of over 80, and the total
time is higher by a factor of about 13. All times in the table are CPU seconds on
an HP9000 C3000 workstation. In our implementation QAP subproblems of size
n = 3 are solved by enumeration; for scrlb this occurs on level 12.

Below we give computational results that compare the performance of our algo-
rithm with several other recent B&B algorithms for the QAP. We consider a number
of “medium to large” (16 < n < 24) problems from QAPLIB [9] that are commonly
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TABLE 3: Comparison of branching strategies on scrl5

Branching Strategy A Branching Strategy B

Level Nodes Fthm. Ehm. Time Nodes Fthm. Elim. Time

0 1 0.00  0.00 0.05 1 0.00 0.00 1.36
1 9 0.00  0.00 0.34 9 0.00 017 11.43
2 108 0.06  0.09 2.96 90 0.07 080 44.50
3 1,159 024 016  21.57 213 023 070 245
4 8,900 0.50  0.27  97.17 601 0.68 055 3.33
5 35,218 0.68  0.38 228.25 949 0.80 0.67 2.90
6 69,775 0.80 049 283.43 615 0.88 0.67 1.35
7 64,436 0.87 0.52 165.40 217 097 075 031
8 31,418 0.92 050  53.82 14 093 086 0.00
9 8,631 0.98  0.56 7.75 1 0.00 0.83 0.00
10 538 1.00  0.70 0.26 1 0.00 0.80 0.00
11 3 0.67  0.75 0.00 1 0.00 075  0.00
12 1 0.00 1 0.00
Total 220,197 861.00 2,713 67.63

used as benchmarks. In applying our algorithm we choose one of the branching
strategies (A, B, C, or D) described in the previous section, based on the size and
difficulty of the problem. In Table 4 we give the number of nodes required in the
B&B tree for the optimal solution of each problem using our algorithm (BA). In
each case the initial incumbent value v is set to the optimal objective value of the
problem plus one. (For many of these problems the optimal objective value was first
proved optimal within the last 5 years.) With this incumbent value the algorithm
cannot fathom any node on a path that leads to an optimal solution, so the B&B
algorithm must complete one “dive” in the tree that leads to an optimal permuta-
tion. For comparison we give the number of nodes required by the B&B algorithms
of Clausen and Perregaard (CP) [12], Bringger et al. (BMCP) [6], Hahn, Grant
and Hall (HGH) [19], and Hahn et al. (HHJGR) [20]. The results from CP and
BMCP use the same GLB-based algorithm; the results for nugl6b/18/20 are from
CP, and for the remainder of the problems are from BMCP. HGH and HHJGR both
use the dual-LP bound of [18] (see also [25]), but HHJGR uses more sophisticated
branching rules. The HHJGR results for had16 and nugl8 were provided by Hahn
(private communication).

From Table 4 it 1s clear that in terms of nodes our results are far superior to the
GLB-based results of CP/BMCP, and are of the same order of magnitude as the
node counts from HGH/HHJGR on all problems except rou20. However, since GLB
can be computed much more rapidly than either our QP-based bound, or the dual-
LP bound used by HGH/HHJGR, a consideration of the total CPU time required
for the different methods is required. Because of advances in hardware, and the use
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TABLE 4: Comparison of nodes for B&B algorithms on QAPLIB problems

Problem Strategy BA CP/BMCP HGH HHIJGR
had16 A 8,964 18,770,885 13,808 3,069
had18 A 104,229 761,452,218 197,487 53,224
had20 A 122,460 7,616,968,110

nugl6b B 6,867 320,556

nugl8§ C 251,470 114,948,381 202,021
nug20 C 1,040,308 360,148,026 724,289 239,449
nug21 C 1,698,093 3,631,929,368 3,192,565

nug?22 C 1,225,892 48,538,844 .41 10,768,366 988,302
nug24 D 31,865,440 11,674,95
rou20 D 56,082,781 2,161,665,137 2,090,862

tail7a C 750,441 20,863,039

tai20a D 54,643,195 2,215,221,637

of parallel machines for some references; raw CPU times must be adjusted with care
to make a sensible comparison. Our times are obtained on a single, lightly loaded
HP9000 C3000 workstation. In comparing our times to the results of CP/BMCP
and HGH/HHJGR, the raw times reported in these papers are adjusted as follows.

HHJGR. Times in this paper were obtained on a 360 MHz Sun UltraSparc work-
station. Based on the SPECint95 figure of 15.2 for this machine, versus 31.8 for
the HP9000 C3000, the times reported in [20] were divided by 2.

HGH. Times in this paper were obtained on a 75 MHz Sun SuperSparc. Based
on information provided by Hahn (private communication), the UltraSparc used
by HHJGR is approximately 4 times as fast as this machine on the QAP B&B
application. Consequently the times reported in [19] were divided by 8.

CP.Times in this paper were obtained on a 16-processor MEIKO computing sys-
tem. It is reported in [11] that the 16-processor system provides an effective
“speed-up” of about 14 over the use of one processor, and a single processor in the
MEIKO system requires 3-4 times as much time as an HP9000/735 workstation
on the same application. Using a factor of 3.5 to convert to the HP9000/735,
the raw times in [12] times 4 would give approximate run times on a single
HP9000/735. This HP machine appears to be comparable in performance to the
Sun SuperSparc used in [19] (SPECint95 figures are 3.27 for the HP and 3.11 for
the Sun). Thus the raw times in [12] are approximately equal to the serial time
on the Sun UltraSparc used by HHJGR, and these times were divided by two to
convert to the HP9000 C3000.

BMCP. Times in this paper were obtained on NEC Cenju-3 and Intel Paragon
XP/S22 multi-processor systems. The only information available for the per-
formance of individual processors in these systems are MFLOP rates of 50 for
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TABLE 5: Equivalent CPU time (m) on QAPLIB problems

Problem BA CP/BMCP HGH HHJGR

had16 0.8 15.8 2.8 0.4
had18 11.1 871.1 70.1 9.1
had20 15.7 50,992 .4

nugl6b 0.9 0.3

nugl8 69.2 123.1 33.5
nug20 145.8 483.0 333.1 134.1
nug21 212.3 6,331.9  1,296.9

nug22 134.3 113,336.1  3,775.9  1,663.4
nug24 5829.9 6,437.7
rou20 8391.6 3,787.7  2,062.6

tail7a 112.7 23.6

tai20a 5505.2 12,131.8

the NEC, and 75 for the Intel. The number of processors used to solve different
problems varied between 16 and 96. Times were converted by assuming a par-
allel utilization factor of .875 (as also used in [19]), converting to serial time on
the Sun SuperSparc based on that machine’s MFLOP rate of 44.4, and finally
dividing by 8 to convert to the HP9000 C3000.

In Table 5 we give the CPU time (in minutes) required by our algorithm, and
equivalent times for the B&B algorithms of CP/BMCP, HGH, and HHJGR on
the same problems, obtained as described above. Clearly the adjustment is most
difficult for the BMCP times, but even there the adjusted times appear to be quite
reasonable. Note, for example, that the ratio of the nodes required for nug21 (from
BMCP) compared to nug20 (from CP) is 10.1, compared to a ratio of equivalent
times of 13.1. Tt is to be expected that the time ratio would be somewhat greater
than the node ratio, because the problems at each level of the tree are larger.

Table 5 indicates that the performance of our algorithm on most larger prob-
lems is far superior to the GLB-based results of CP/BMCP, and is competitive
with the state-of-the-art dual-LP based results of HHJGR. It should be noted that
the results reported here for our algorithm do not use highly optimized branching
strategies. In particular, by using more complex problem-specific branching strate-
gies we can reduce both the nodes and time required by our algorithm. However
our results indicate that even with simple branching strategies the performance of
our algorithm on difficult problems is highly competitive.

In Figure 3 we illustrate the equivalent times from Table 5 for the nugxx problems
of size 18 to 24, using a logarithmic time scale. Exponential growth is evident for
all four series, but the rate of growth for our results appears to be lower than for
the other algorithms. (We believe that the trend for our times is best represented
if our result for nug22, which is exceptionally good, is ignored.) This observation
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FIGURE 3: Equivalent times to solve nugxx problems

suggests that our algorithm may perform well on problems even larger than those

considered here, particularly if more complex branching rules are employed. In

order to obtain reasonable solution times for problems of size n > 24 we have
implemented our algorithm using the Master-Worker (MW) distributed processing
system [16]. Details of the MW implementation and computational results on larger
problems are reported in [3].
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