
Potential Reduction Algorithms ∗

Kurt M. Anstreicher
Department of Management Sciences

University of Iowa
Iowa City, IA 52242, USA

1 Introduction

Potential reduction algorithms have a distinguished role in the area of in-
terior point methods for mathematical programming. Karmarkar’s [44] al-
gorithm for linear programming, whose announcement in 1984 initiated a
torrent of research into interior point methods, used three key ingredients: a
non–standard linear programming formulation, projective transformations,
and a potential function with which to measure the progress of the algorithm.
It was quickly shown that the non–standard formulation could be avoided,
and eventually algorithms were developed that eliminated the projective
transformations, but retained the use of a potential function. It is then fair
to say that the only really essential element of Karmarkar’s analysis was the
potential function. Further modifications to Karmarkar’s original potential
function gave rise to potential reduction algorithms having the state–of–the–
art theoretical complexity of O(

√
nL) iterations, to solve a standard form

linear program with n variables, and integer data with total bit size L. In
the classical optimization literature, potential reduction algorithms are most
closely related to Huard’s [39] “method of centres,” see also Fiacco and Mc-
Cormick [21, Section 7.2]. However, Karmarkar’s use of a potential function
to facilitate a complexity, as opposed to convergence analysis, was completely
novel.

The purpose of this article is to give a comprehensive survey of potential
reduction algorithms for linear programming. (In the final section we will
also briefly describe the extension of potential reduction algorithms to more
general problems.) The major algorithms that are discussed, and analyzed,
are Karmarkar’s algorithm, the affine potential reduction method, and the
primal–dual potential reduction algorithm. The different algorithms are all

∗This paper appears as Chapter 4 in Interior Point Methods of Mathematical Program-
ming, T. Terlaky, ed., Kluwer, 1996.

1



described using simple, consistent notation in order to facilitate a comparison
between them. Before discussing any algorithms we provide (in the next
section) the basic complexity arguments based on the primal, and primal–
dual potential functions. In the last section we describe various modifications
and extensions of the algorithms.

Todd [78] has already written an excellent survey of potential reduction
algorithms. Compared to [78], this is a more introductory article that covers
less material. For the reader interested in a more technical discussion of
the topics covered here, with a greater emphasis on research issues and new
extensions, we highly recommend [78]. For a discussion of path–following
methods, the other major class of polynomial–time interior point algorithms,
we highly recommend the survey paper of Gonzaga [37].

Notation. We use very standard notation throughout. Subscripts denote
components of a vector, and superscripts denote iteration numbers. For a
vector x ∈ Rn, we use X to denote the n×n diagonal matrix having Xii = xi,
i = 1, . . . , n; similar notation is used for s and S, v and V , and so on. We
use e to denote a vector of variable dimension, with each component equal
to one. We use ‖ · ‖ to denote the two–norm, ‖x‖ = ‖x‖2, and ‖ · ‖∞ to
denote the infinity–norm.

2 Potential Functions for Linear Programming

Consider a standard form linear program, and its dual:

LP : min cTx LD : max bT y
Ax = b AT y + s = c
x ≥ 0 s ≥ 0,

where A is an m× n matrix. We assume without loss of generality that the
rows of A are linearly independent. We also assume that the set of optimal
solutions for LP is nonempty and bounded, and let z∗ denote the optimal
objective value in LP and LD. The primal potential function for LP is then

f(x, z) = q ln(cTx− z)−
n∑
i=1

ln(xi),

where x > 0 is a point in the (relative) interior of LP, z ≤ z∗ is a lower
bound on the optimal objective value, and q ≥ n. Given an initial interior
point x0, and lower bound z0, a potential reduction method based on f(·, ·)
obtains a sequence (xk, zk), k ≥ 0 of interior points and lower bounds such
that f(xk, zk) → −∞. The usual approach to analyzing such an algorithm
is to show that on each iteration k it is possible to reduce f(·, ·) by some

2



uniform, positive amount δ. Note that for any x > 0,

n∑
i=1

ln(xi) ≤ n ln

(
eTx

n

)
,

by the arithmetic–geometric mean inequality. If we assume that a decrease
of at least δ occurs on each iteration, then after k iterations we immediately
obtain

ln(cTxk − zk) ≤ f(x0, z0)
q

− kδ

q
+
n

q
ln

(
eTxk

n

)
. (1)

Clearly then if the solution sequence {xk} is bounded, the “gap” cTxk − zk
will be driven to zero. We will next translate this observation into a precise
complexity result for LP.

The usual complexity model for LP (see for example [65]) assumes that
the data in LP is integral, and characterizes the performance of an algorithm
in terms of the dimensions m and n, and the number of bits L required to
encode the problem instance in binary. (The quantity L is commonly refered
to as the size of LP.) A complete complexity analysis should bound the
number of digits required in all computations carried out by the algorithm,
but we ignore this issue here and consider only the number of arithmetic
operations performed, and not the sizes of the numbers involved. We will
use the well–known fact (see [65]) that if cTx − z ≤ 2−2L for a feasible
solution x and lower bound z, then x can be “rounded” to an exact optimal
solution of LP in O(m2n) operations. It is also well known that if LP has
an optimal solution value z∗, then −2O(L) ≤ z∗ ≤ 2O(L).

To start, we assume that we are given an initial interior solution x0, and
lower bound z0, such that f(x0, z0) ≤ O(qL). Later we will discuss the
“initialization” problem of finding such a pair (x0, z0).

Theorem 2.1 Assume that the set of optimal solutions of LP is nonempty
and bounded. Suppose that f(x0, z0) ≤ O(qL), and f(·, ·) is reduced by δ on
each iteration. Then after k = O(qL/δ) iterations, cTxk − zk ≤ 2−2L.

Proof: We will show that ln(eTxk/n) = O(L) for all k ≥ O(qL/δ), and
therefore the theorem immediately follows from (1). For each iteration k
define scalars

λk1 =
n

eTxk
, λk2 =

(
n

eTxk

)1−n
q

exp

[
f(x0, s0)

q
− kδ

q

]
,

and let ξk = nxk/eTxk = λk1x
k, so that eT ξk = n. Exponentiating (1) then

results in
cT ξk ≤ λk1zk + λk2.

3



It follows that for every k ≥ 0, (ξk, λk1, λ
k
2) is a feasible solution for the linear

programming problem:

min λ1 + λ2

Aξ − λ1b = 0
eT ξ = n

cT ξ − λ1zmax − λ2 ≤ 0
ξ ≥ 0, λ1 ≥ 0, λ2 ≥ 0,

(2)

where zmax = 2O(L) is an upper bound for z∗. Since the set of optimal
solutions of LP is nonempty and bounded, the optimal objective value in (2)
is strictly positive. Moreover the size of (2) isO(L), and therefore the optimal
objective value is at least 2−O(L) (see [65]). However, after k = O(qL/δ)
iterations we must have either eTxk ≤ n, or λk2 < 2−O(L). It follows that
for all k ≥ O(qL/δ), λk1 ≥ 2−O(L), and therefore ln(eTxk/n) ≤ O(L), as
claimed. 2

To provide a complete complexity result for LP we still need to deal with
the issue of satisfying the assumptions of Theorem 2.1. This is quite simple,
at least from a theoretical standpoint. For an arbitrary problem LP, with
no assumptions whatsoever, consider the augmented problem:

MLP : min ĉT x̂

Âx̂ = b

eT x̂ ≤ M

x̂ ≥ 0,

where x̂ ∈ Rn+1, and

Â = (A, b−Ae), ĉ =
(
c

M

)
.

It is then very well known (see for example [65]) that MLP is equivalent to
LP for M = 2O(L), in that x∗ with eTx∗ < M is an optimal solution for
LP if and only x̂i = x∗i , i = 1, . . . , n, x̂n+1 = 0 is an optimal solution for
MLP. (If the optimal solution to MLP has x̂n+1 > 0 then LP is infeasible.
If the optimal solution to MLP has eT x̂ = M then either LP is unbounded,
or LP has an unbounded set of optimal solutions, and these cases can be
distinguished by doubling M and solving MLP again.) The primal potential
function can then be defined for MLP instead of LP, and it is easy to verify
that for z0 = −2O(L), x̂0 = e, the assumptions of Theorem 2.1 are satisfied.

In addition to potential reduction methods based on f(·, ·), we will con-
sider algorithms that utilize the primal–dual potential function for LP:

F (x, s) = q ln(xT s)−
n∑
i=1

ln(xi)−
n∑
i=1

ln(si),

4



where q > n, x > 0 is feasible for LP, and s > 0 is feasible for LD. (By the
latter we mean that there is a y ∈ Rm so that AT y + s = c.) Note that for
any such x and s,

F (x, s) = (q − n) ln(xT s)−
n∑
i=1

ln
(
xisi
xT s

)
≥ (q − n) ln(xT s) + n ln(n), (3)

by the arithmetic–geometric mean inequality, where we are using the fact
that eT (XSe/xT s) = 1. A potential reduction algorithm based on F (·, ·)
generates a sequence of primal and dual solutions (xk, sk) so that F (xk, sk)→
−∞. We will now give a complexity result for such an algorithm under
the assumption that F (·, ·) is reduced by some uniform amount δ on each
iteration k. The proof of this result is extremely simple, due to the form of
F (·, ·).

Theorem 2.2 Suppose that F (x0, s0) ≤ O((q − n)L), and F (·, ·) is reduced
by δ on each iteration. Then after k = O((q − n)L/δ) iterations, (xk)T sk ≤
2−2L.

Proof: Using (3) we obtain

ln((xk)T sk) ≤ F (xk, sk)
q − n

≤ F (x0, s0)− kδ
q − n

,

from which the theorem easily follows. 2

Note that the existence of an interior point for the dual problem LD im-
plies that the set of optimal solutions for LP is bounded, so the boundedness
assumption that was explicit in Theorem 2.1 is implicit in Theorem 2.2. To
provide a complete complexity result for LP based on the reduction of F (·, ·)
we must deal with the initialization problem of finding (x0, s0) that satisfy
the assumptions of Theorem 2.2. This can be done using an augmented
problem that is very similar to the problem MLP described above, but the
analysis is somewhat more complex than for the primal case, and is omitted
here. We refer the interested reader to [13, Section 5] for the details of such
an initialization.

Remarks. The primal potential function was introduced by Karmarkar
[44]. The exponentiated, or “multiplicative” form of the potential function
was used by Iri and Imai [41], and was further studied by Imai [40]. The
use of general values for q was suggested by Gonzaga [33]. The primal–dual
potential function was introduced by Todd and Ye [80], and (in multiplica-
tive form) Tanabe [70]. See Ye, Todd, and Mizuno [91] and Jansen, Roos
and Terlaky [42] for alternative “homogeneous self–dual” approaches to the
initialization problem.

5



3 Karmarkar’s Algorithm

In this section we describe Karmarkar’s projective algorithm for LP. The
original algorithm, as presented in [44], was based on a linear program in a
non–standard special form. The “standard form” version we describe here
was independently devised in [3], [20], [28], [32], [67], and [89]. Let xk, k ≥ 0,
be a feasible interior point for LP, and zk ≤ z∗ a valid lower bound. Our
goal is to generate a new interior point xk+1, and lower bound zk+1, so that
the primal potential function f(·, ·), with q = n + 1, is decreased by an
amount δ = Ω(1). From Theorem 2.1, such a decrease immediately provides
an O(nL) iteration algorithm for LP.

Consider a new linear programming problem, with variables x̄ ∈ Rn+1:

HLP: min c̄Tx

Āx̄ = 0
dT x̄ = 1
x̄ ≥ 0,

where
Ā = (AXk,−b), c̄ =

(
Xkc

0

)
, d =

(
0
1

)
.

One can think of obtaining HLP from LP by applying a transformation of
variables:

x̄ =
(

(Xk)−1x
1

)
,

and then using the additional variable x̄n+1 to “homogenize” the original
equality constraints of LP. Clearly HLP is equivalent to LP, and x̄ = e is
feasible in LP. The derivation of a step in LP is based on the transformed
problem LP. First we consider the issue of updating the lower bound. For
any matrix B, let PB denote the orthogonal projection onto the nullspace
of B. In the case that B has independent rows, we then have PB = I −
BT (BBT )−1B.

Lemma 3.1 (Todd and Burrell [79]) Suppose that z ∈ R satisfies PĀ(c̄ −
zd) ≥ 0. Then z ≤ z∗.

Proof: The dual of HLP is:

HLD: max z

ĀT y + dz ≤ c̄ .

6



But PĀ(c̄− zd) = (c̄− zd)− ĀT y(z) for some y(z) ∈ Rm, so PĀ(c̄− zd) ≥ 0
implies that (y(z), z) is feasible in HLD. Then z ≤ z∗, since LP and HLP
have the same optimal objective value. 2

Using Lemma 3.1 the lower bound zk can be updated as follows. Let
Zk = {z ≥ zk |PĀ(c̄− zd) ≥ 0}, and define zk+1 to be:

zk+1 =
{

max{z ∈ Zk} if Zk 6= ∅,
zk otherwise.

Then z̄ = zk+1 ≤ z∗, by Lemma 3.1, and moreover by construction we have
PĀ(c̄− z̄d) 6> 0. Now let

∆x̄ = P[ Ā
eT ](c̄− z̄d) = PeTPĀ(c̄− z̄d) = PĀ(c̄− z̄d)− (c̄− z̄d)T e

n+ 1
e,

where we are using the fact that Āe = 0. Since PĀ(c̄ − z̄d) 6> 0, we then
immediately have

‖∆x̄‖ ≥ ‖∆x̄‖∞ ≥
(c̄− z̄d)T e
n+ 1

. (4)

The next point, in the transformed variables x̄, will be of the form

x̄ ′ = e− α ∆x̄
‖∆x̄‖

, (5)

where α > 0 is a steplength yet to be decided. Note that the resulting x̄ ′

will satisfy the equality constraints Āx̄ = 0 of HLP, but in general will fail
to satisfy dT x̄ ′ = 1. In order to obtain a new point xk+1 which is feasible
for LP, we employ a projective transformation

xk+1 =
Xkx̄ ′

dT x̄ ′
. (6)

Substituting (6) into the definition of f(·, ·), with q = n+1, for α sufficiently
small we obtain

f(xk+1, zk+1)− f(xk, zk+1)

= (n+ 1) ln

(
cTxk+1 − zk+1

cTxk − zk+1

)
−

n∑
i=1

ln

(
xk+1
i

xki

)

= (n+ 1) ln

(
(c̄− z̄d)T x̄ ′/x̄ ′n+1

(c̄− z̄d)T e

)
−

n∑
i=1

ln

(
x̄ ′i
x̄ ′n+1

)

= (n+ 1) ln

(
(c̄− z̄d)T (e− α∆x̄/‖∆x̄‖)

(c̄− z̄d)T e

)
−
n+1∑
i=1

ln(x̄ ′i)

= (n+ 1) ln
(

1− α‖∆x̄‖
(c̄− z̄d)T e

)
−
n+1∑
i=1

ln
(

1− α ∆x̄i
‖∆x̄‖

)

≤ −α−
n+1∑
i=1

ln
(

1− α ∆x̄i
‖∆x̄‖

)
, (7)

7



where the inequality uses (4), and the fact that ln(1 − t) ≤ −t for any
0 ≤ t < 1.

To obtain a bound on the potential decrease for Karmarkar’s algorithm
we need to obtain a bound for (7). One approach is to use the following
well–known inequality.

Lemma 3.2 Let u ∈ Rn, ‖u‖∞ ≤ 1. Then

n∑
i=1

ln(1 + ui) ≥ eTu−
‖u‖2

2(1− ‖u‖∞)
.

Proof: For each i = 1, . . . , n the Taylor series expansion for ln(1+ui) results
in

ln(1 + ui) =
∞∑
j=1

(−1)j+1uji
j

≥ ui −
1
2

∞∑
j=2

|ui|j = ui −
u2
i

2(1− |ui|)
. (8)

The proof is completed by summing (8), and using |ui| ≤ ‖u‖∞ for each i.
2

Theorem 3.3 On every iteration k ≥ 0 of Karmarkar’s algorithm, the
steplength α may be chosen so that f(xk, zk)− f(xk+1, zk+1) ≥ .25 .

Proof: We have

f(xk, zk)− f(xk+1, zk+1) ≥ f(xk, zk+1)− f(xk+1, zk+1)

≥ α+
n+1∑
i=1

ln
(

1− α ∆x̄i
‖∆x̄‖

)

≥ α− α2

2(1− α)
, (9)

where the first inequality uses zk+1 ≥ zk, the second uses (7), and the third
uses Lemma 3.2 and the fact that eT∆x̄ = 0. The proof is completed by
substituting α = .5 into (9). 2

An important feature of Karmarkar’s algorithm is that in practice, an
approximate linesearch in the steplength α can be performed to maximize
the potential decrease on each step. Such a linesearch typically obtains
steplengths, and potential decreases, that are much larger than the Ω(1)
values that appear in the worst–case analysis above.

Remarks. There are many papers that consider different aspects of Kar-
markar’s algorithm. One line of investigation concerns the potential decrease
assured in Theorem 3.3. The decrease of .25 proved here can easily be im-
proved to 1−ln(2) ≈ .31 by sharper approximation of the logarithmic barrier

8



terms. Muramatsu and Tsuchiya [59] show that using a “fixed fraction to
the boundary” step, based on the “affine” direction PĀ(c̄− z̄d), a decrease of
about .41 is always possible. Anstreicher [4] and McDiarmid [48] indepen-
dently proved that with exact linesearch of the potential function a decrease
of approximately .7215 is always possible, and this bound is tight. Another
interesting topic is the derivation of a lower bound for the worst–case com-
plexity of the algorithm. Anstreicher [8] shows that using exact linesearch
of the potential function, the algorithm may produce an O(1) reduction in
f(·, ·) on every iteration, and may require Ω(ln(n/ε)) iterations to reduce
the gap cTxk − zk to a factor ε < 1 of its initial value. Ji and Ye [43]
elaborate further the analysis of [8]. Powell [66] shows that the iterates of
Karmarkar’s algorithm, with exact linesearch, may visit the neighborhoods
of Ω(n) extreme points of the feasible region.

Anstreicher [3] and Steger [67] describe a “ball update” alternative to
Todd and Burrell’s [79] lower bound methodology. Shaw and Goldfarb
[69] show that with a weakened version of the ball update, and short steps
(α < 1), the projective algorithm can be viewed as a path following method
and has a complexity of O(

√
nL) iterations. Anstreicher [3] describes a mod-

ification of the algorithm that assures monotonicity of the objective values
{cTxk}. Anstreicher [11] describes a stronger monotonicity modification,
and obtains a complexity of O(

√
nL) iterations using the weakened ball up-

dates, and steplengths based on the primal–dual potential function F (·, ·).
Goldfarb and Mehrotra [30],[31] modify the projective algorithm to allow for
the use of inexact computation of the search direction ∆x̄. Todd [71] consid-
ers the computation of lower bounds, and the search direction, for problems
with special structure. Todd [72] and Ye [84] describe the construction of
“dual ellipsoids” that contain all dual optimal solutions. In principle this
procedure could be used to eliminate variables as the algorithm iterates, but
Anstreicher [7] describes why the process fails in the presence of degeneracy.
Todd [74] and Anstreicher and Watteyne [14] describe alternatives to the
usual search direction obtained via decomposition, and projection onto a
simplex, respectively. Computational results for Karmarkar’s algorithm are
reported in [14], and by Todd [73].

Asic et al. [2] consider the the asymptotic behavior of the iterates in
Karmarkar’s algorithm using short step (α < 1), while Megiddo and Shub
[49] and Monteiro [53] examine properties of the continuous trajectories as-
sociated with the algorithm. Bayer and Lagarias [15] explore connections
between Karmarkar’s algorithm and Newton’s method, Gill et al. [29] de-
scribe relationships between Karmarkar’s algorithm and logarithmic barrier
methods, and Mitchell and Todd [51] relate Karmarkar’s method to the pri-
mal affine scaling algorithm. Freund [23], Gonzaga [35], and Mitchell and
Todd [52] consider the projective algorithm for more general problem for-

9



mulations than that of LP. See also Freund [26] for a very general discussion
of the use of projective transformations.

4 The Affine Potential Reduction Algorithm

Although Karmarkar’s algorithm caused a revolution in mathematical pro-
gramming, there are some aspects of the method that are less than ideal.
For example projective transformations have rarely been employed in the op-
timization literature, and the use of the projective transfomation (6) is not
particularly intuitive. In addition, the O(nL) iteration complexity bound
for the algorithm was eventually bettered by “path–following” methods for
linear programming (see for example [37]), which achieve a complexity of
O(
√
nL) iterations.

It turns out that both of the above issues can be addressed by a method
that is quite similar to Karmarkar’s algorithm, but which avoids the use of
a projective transformation on each step. Given a feasible interior point xk,
k ≥ 0, consider a transformed problem:

LP: min c̄Tx

Āx̄ = b

x̄ ≥ 0,

where now Ā = AXk and c̄ = Xkc. Let LD denote the dual of LP. One
can think of obtaining LP from LP by applying a simple re–scaling of the
variables of the form

x̄ = (Xk)−1x. (10)

Clearly LP is equivalent to LP, and x̄ = e is feasible in LP. As in Karmarkar’s
algorithm, the derivation of a step in LP is based on the transformed problem
LP. Define a transformed potential function

f̄(x̄, z) = q ln(c̄T x̄− z)−
n∑
i=1

ln(x̄i).

Note that if x and x̄ are related by (10), then f(x, z) and f(x̄, z) differ by
a constant which depends only on xk. As a result, it suffices to analyze the
decrease in f̄(·, ·) starting at x̄ = e, z = zk. To this end, let ∆x̄ be the
projection of the gradient of f̄(e, zk) onto the nullspace of Ā:

∆x̄ = PĀ[∇x̄f̄(e, zk)]T = PĀ

(
q

c̄T e− zk
c̄− e

)
. (11)

10



Re–arranging (11), it follows that there is a y ′ ∈ Rm so that

c̄ = ĀT y ′ +
c̄T e− zk

q
(e+ ∆x̄). (12)

Lemma 4.1 Let q = n+
√
n, and suppose that ‖∆x̄‖ ≤ η < 1. Then zk+1 =

bT y ′ satisfies zk < zk+1 ≤ z∗, and f(xk, zk)− f(xk, zk+1) ≥ (1− η)
√
n.

Proof: Clearly e + ∆x̄ > 0, so (12) implies that y ′ is feasible for the dual
of LP, and therefore bT y ′ ≤ z∗. In addition,

c̄T e− bT y ′ =
(
c̄T e− zk

q

)
eT (e+ ∆x̄) ≤ n+ η

√
n

q
(c̄T e− zk), (13)

implying zk+1 > zk. Finally,

f(xk, zk+1)− f(xk, zk) = f̄(e, zk+1)− f̄(e, zk)

= q ln

(
c̄T e− zk+1

c̄T e− zk

)
≤ q ln

(
n+ η

√
n

q

)

= q ln

(
1− (1− η)

√
n

q

)
≤ −(1− η)

√
n,

where the last inequality uses ln(1− t) ≤ −t for t < 1. 2

Let 0 < η < 1 be a fixed constant, independent of n. By Lemma 4.1, if
‖∆x̄‖ < η, then the lower bound can be updated to a new value zk+1, such
that the potential function f(·, ·) is reduced by Ω(

√
n). Consider next the

situation when ‖∆x̄‖ ≥ η. In this case we take a step in the transformed
problem of the form:

x̄ ′ = e− α ∆x̄
‖∆x̄‖

, (14)

where α > 0 is a steplength yet to be decided. Following such a step, a new
point xk+1 is defined by xk+1 = Xkx̄ ′.

Lemma 4.2 Let q = n+
√
n, and suppose that ‖∆x̄‖ ≥ η > 0. Then there

is a steplength α so that f(xk, zk)− f(xk+1, zk) ≥ (1 + η)−
√

1 + 2η > 0.

Proof: We have

f(xk+1, zk)− f(xk, zk)
= f̄(x̄ ′, zk)− f̄(e, zk)

= q ln

(
c̄T (e− α∆x̄/‖∆x̄‖)− zk

c̄T e− zk

)
−

n∑
i=1

ln
(

1− α ∆x̄i
‖∆x̄‖

)

11



≤ q ln

(
1− αc̄T∆x̄/‖∆x̄‖

c̄T e− zk

)
+ α

eT∆x̄
‖∆x̄‖

+
α2

2(1− α)

≤ −α
(

q

c̄T e− zk
c̄− e

)T ∆x̄
‖∆x̄‖

+
α2

2(1− α)

= −α‖∆x̄‖+
α2

2(1− α)

≤ −αη +
α2

2(1− α)
, (15)

where the first inequality uses Lemma 3.2, and the second uses ln(1−t) ≤ −t
for t < 1. A straightforward calculus exercise shows that (15) is minimized
at α = 1− 1/

√
1 + 2η, and substitution of this value into (15) completes the

proof. 2

Taken together, Lemmas 4.1 and 4.2 immediately imply that for q =
n+
√
n, an Ω(1) decrease in f(·, ·) is always possible. As a result, the affine

potential reduction algorithm is an O(nL) iteration method for LP. However,
there is a striking asymmetry between Lemmas 4.1 and 4.2, since the for-
mer shows that in fact an Ω(

√
n) decrease occurs on steps where the lower

bound is updated. In fact the affine potential reduction method, exactly
as described above, can be shown to be an O(

√
nL) iteration algorithm by

analyzing the algorithm using the symmetric primal–dual potential function
F (·, ·), instead of the primal potential function f(·, ·).

Suppose that xk > 0 and sk > 0 are feasible for LP and LD, respectively.
Consider a linear transformation of the dual variables

s̄ = Xks. (16)

Then for any x > 0 and s > 0, feasible in LP and LD, respectively, x̄ and
s̄ from (10) and (16) are feasible in LP and LD, respectively, and moreover
F (x, s) = F (x̄, s̄). As a result, it suffices to analyze the descent in F (·, ·)
starting at x̄ = e, s̄ = s̄k = Xksk. Let ∆x̄ be as in (11), for zk = bT yk,
where AT yk + sk = c. If ‖∆x̄‖ ≥ η, we continue to take a step as in (14),
and let xk+1 = Xkx̄ ′.

Lemma 4.3 Let q = n +
√
n, and let ∆x̄ be as in (11), with zk = bT yk.

Suppose that ‖∆x̄‖ ≥ η > 0. Then there is a steplength α so that F (xk, sk)−
F (xk+1, sk) ≥ (1 + η)−

√
1 + 2η > 0.

Proof: The proof is identical to that of Lemma 4.2, using the fact that for
any x̄, x̄T s̄k = c̄T x̄− zk. 2

Next we turn to the case of ‖∆x̄‖ ≤ η. As before, we will use the fact
that (12) provides a feasible solution for LD. Define

s̄ ′ =
c̄T e− zk

q
(e+ ∆x̄) =

eT s̄k

q
(e+ ∆x̄). (17)

12



We now require an analysis of the step from s̄k to s̄ ′ that includes the effect
of the dual barrier terms in F (·, ·).

Theorem 4.4 Suppose that ‖∆x̄‖ ≤ η. Let s̄ ′ be as in (17), and let sk+1 =
(Xk)−1s̄ ′. Then F (xk, sk)− F (xk, sk+1) ≥ (1− 2η)/(2− 2η).

Proof: We have

F (xk, sk+1)− F (xk, sk)
= F (e, s̄ ′)− F (e, s̄k)

= q ln

(
eT s̄ ′

eT s̄k

)
−

n∑
i=1

ln(s̄ ′i) +
n∑
i=1

ln(s̄ki )

= q ln
(
n+ eT∆x̄

q

)
− n ln

(
eT s̄k

q

)
−

n∑
i=1

ln(1 + ∆x̄i) +
n∑
i=1

ln(s̄ki ),

where the last equality uses (17). Note that

n∑
i=1

ln(s̄ki ) ≤ n ln(eT s̄k/n), (18)

by the arithmetic–geometric mean inequality. Moreover, Lemma 3.2 implies
that

−
n∑
i=1

ln(1 + ∆x̄i) ≤ −eT∆x̄+
η2

2(1− η)
. (19)

Using (18) and (19), we obtain F (xk, sk+1)− F (xk, sk)

≤ q ln

(
n+ eT∆x̄

q

)
− n ln

(
eT s̄k

q

)
− eT∆x̄+

η2

2(1− η)
+ n ln

(
eT s̄k

n

)

= (q − n) ln

(
n+ eT∆x̄

q

)
+ n ln

(
n+ eT∆x̄

n

)
− eT∆x̄+

η2

2(1− η)

=
√
n ln

(
1−
√
n− eT∆x̄

q

)
+ n ln

(
1 +

eT∆x̄
n

)
− eT∆x̄+

η2

2(1− η)

≤ −n(1− η)
q

+
η2

2(1− η)
,

where the last inequality uses ln(1 + t) ≤ t for t > −1 (twice), and the fact
that ‖∆x̄‖ ≤ η. The proof is completed by noting that q = n+

√
n ≤ 2n for

n ≥ 1. 2

Lemma 4.3, and Theorems 4.4 and 2.2, imply that the affine potential
reduction algorithm, using q = n+

√
n and η < .5, is an O(

√
nL) algorithm

13



for LP. As with Karmarkar’s algorithm, in practice a linesearch in α can also
be used to improve the decrease in F (·, ·) on primal steps.

Remarks. The affine potential reduction method based on f(·, ·) was pro-
posed by Gonzaga [33], who assumed that z0 = z∗. The lower bound logic
based on (12) was suggested in [33], and fully developed by Freund [24].
Independently, Ye [85] devised the analysis based on F (·, ·), which reduces
the complexity of the algorithm to O(

√
nL) iterations. Ye [83] also describes

an alternative O(
√
nL) iteration algorithm that uses F (·, ·), but employs

projective transformations as in Karmarkar’s algorithm.
The lower bound, or dual variable, update based on (12) can be modified

in several different ways. For example, in [24] the lower bound is increased
to a value zk+1 so that following the bound update it is always the case that
‖∆x̄‖ ≥ η. As a result, updates of the lower bound (or dual solution) are
immediately be followed by primal steps. Gonzaga [36] considers a general
procedure for the construction of lower bounds, and Mitchell [50] relates the
construction in [36] to earlier results of Todd [72].

Anstreicher [10] describes a monotonicity modification for the affine po-
tential reduction algorithm, and Ye [86] analyzes a variant that allows for
column generation. Monteiro [58] considers the behavior of the continuous
trajectories associated with the algorithm. Todd [77] describes analogs of po-
tential reduction methods for semi–infinite linear programming. Anstreicher
[12] devises an algorithm which is similar to the affine potential reduction
for LD, but which employs a volumetric potential function

q ln(z − bT y)− 1
2

ln
(
det(AS−2AT )

)
,

where s = c−AT y > 0, q = O(m), and z > z∗. The resulting algorithm has a
complexity ofO(m

√
nL) iterations. Using a potential function that combines

the volumetric barrier with the usual logarithmic barrier, the algorithm’s
complexity is reduced to O(

√
mnL) iterations.

5 The Primal–Dual Algorithm

In the analysis of the previous section, the use of the primal–dual potential
function F (·, ·), with q = n+

√
n, results in a comparable potential reduction

on primal and dual steps, and improves the complexity of the affine potential
reduction algorithm to O(

√
nL) iterations. The algorithm’s treatment of

primal versus dual variables is still very asymmetric, however. In this section
we describe a different potential reduction method based on F (·, ·) which
treats the primal and dual variables in a completely symmetric fashion. This
“primal–dual” algorithm is due to Kojima, Mizuno, and Yoshise [47]. Our

14



derivation here differs somewhat from that in [47], as we wish to emphasize
the connection with the primal algorithm of the previous section.

Let q = n +
√
n, and let xk and sk be feasible interior solutions of LP

and LD, respectively. Consider a change of variables

x̄ = (Xk)−1/2(Sk)1/2 x

s̄ = (Xk)1/2(Sk)−1/2 s.
(20)

Then for any x feasible in LP, x̄ from (20) is feasible for a rescaled problem LP
defined as in the previous section, but using the primal–dual scaling matrix
(Xk)1/2(Sk)−1/2 in place of Xk. Similarly if s is feasible for LD, then s̄ is
feasible in LD, the dual of LP. Moreover, F (x, s) = F (x̄, s̄). Note that the
transformation (20) maps both xk and sk to the vector v = (Xk)1/2(Sk)1/2e.
As a result, it suffices to consider the reduction in F (·, ·) starting at x̄ = s̄ =
v. Note that

[∇xF (v, v)]T = [∇sF (v, v)]T =
q

‖v‖2
v − V −1e.

We define directions

∆x̄ = PĀ

(
q

‖v‖2
v − V −1e

)
, ∆s̄ = (I − PĀ)

(
q

‖v‖2
v − V −1e

)
, (21)

where Ā = A(Xk)1/2(Sk)−1/2. Consider simultaneous primal and dual steps
of the form:

x̄ ′ = v − α
γ∆x̄ = V (e− α

γ V
−1∆x̄),

s̄ ′ = v − α
γ∆s̄ = V (e− α

γ V
−1∆s̄),

(22)

where γ =
√
‖V −1∆x̄‖2 + ‖V −1∆s̄‖2, and α > 0 is a steplength yet to be

decided. We then have F (x̄ ′, s̄ ′)− F (v, v)

= q ln

(
(v − α∆x̄/γ)T (v − α∆s̄/γ)

‖v‖2

)
−

n∑
i=1

ln
(
x̄ ′i
vi

)
−

n∑
i=1

ln
(
s̄ ′i
vi

)

= q ln

(
1− αvT (∆x̄+ ∆s̄)

γ‖v‖2

)
−

n∑
i=1

ln
(

1− α∆x̄i
γvi

)
−

n∑
i=1

ln
(

1− α∆s̄i
γvi

)
,

where we are using the fact that ∆x̄T∆s̄ = 0. Applying Lemma 3.2, and the
fact that ln(1− t) ≤ −t for t < 1, for α sufficiently small we obtain

F (x̄ ′, s̄ ′)− F (v, v) ≤ −αqvT (∆x̄+ ∆s̄)
γ‖v‖2

+
αeTV −1(∆x̄+ ∆s̄)

γ
+

α2

2(1− α)

=
−α
γ

∥∥∥∥ q

‖v‖2
v − V −1e

∥∥∥∥2

+
α2

2(1− α)
, (23)

15



where the equality uses the fact that ∆x̄+ ∆s̄ = (q/‖v‖2)v−V −1e. Now let
vmin = mini{vi}. Then

γ2 = ‖V −1∆x̄‖2 + ‖V −1∆s̄‖2

≤ 1
v2

min

(‖∆x̄‖2 + ‖∆s̄‖2)

=
1

v2
min

‖∆x̄+ ∆s̄‖2

=
1

v2
min

∥∥∥∥ q

‖v‖2
v − V −1e

∥∥∥∥2

. (24)

Using (24) in (23), we obtain

F (x̄ ′, s̄ ′)− F (v, v) ≤ −αvmin

∥∥∥∥ q

‖v‖2
v − V −1e

∥∥∥∥+
α2

2(1− α)
. (25)

To obtain an estimate for the decrease in F (·, ·) for the primal–dual
algorithm we require a bound for the linear term in (25). Such a bound is
provided by the following lemma.

Lemma 5.1 [47, Lemma 2.5] Let v ∈ Rn, v > 0, and q = n+
√
n. Then

vmin

∥∥∥∥ q

‖v‖2
v − V −1e

∥∥∥∥ ≥
√

3
2
.

Proof: We have∥∥∥∥V −1e− q

‖v‖2
v

∥∥∥∥2

=
∥∥∥∥V −1e− n

‖v‖2
v −

√
n

‖v‖2
v

∥∥∥∥2

=
∥∥∥∥V −1e− n

‖v‖2
v

∥∥∥∥2

+
∥∥∥∥ √n‖v‖2 v

∥∥∥∥2

≥
(

1
vmin

− n

‖v‖2
vmin

)2

+
n

‖v‖2

=
1

v2
min

− n

‖v‖2
+
n2v2

min

‖v‖4

=
3

4v2
min

+
(

1
2vmin

− nvmin

‖v‖2
)2

≥ 3
4v2

min

,

where the second equality uses the fact that vT [V −1e− (n/‖v‖2)v] = 0. 2

Theorem 5.2 Let q = n+
√
n, and consider the primal–dual steps defined

as in (22). Let xk+1 = (Xk)1/2(Sk)−1/2 x̄ ′, sk+1 = (Xk)−1/2(Sk)1/2 s̄ ′, Then
there is a steplength α so that F (xk, sk)− F (xk+1, sk+1) ≥ .16 .

16



Proof: From (25) and Lemma 5.1 we have

F (xk+1, sk+1)− F (xk, sk) = F (x̄ ′, s̄ ′)− F (v, v) ≤ − 3
4
α+

α2

2(1− α)
. (26)

The proof is completed by substituting α = .37 into (26). 2

Remarks. Todd and Ye [80], who introduce the primal–dual potential func-
tion F (·, ·), devise an interesting primal–dual potential reduction algorithm
that may be considered to be a precursor to the algorithm of this section.
The method of [80] uses projective transformations, like Karmarkar’s algo-
rithm, and attains a complexity of O(

√
nL) iterations. Unfortunately the

iterates are constrained to lie in a neighborhood of the central path, making
the algorithm similar to a path following method, and precluding the use
of linesearches to increase the descent in F (·, ·) on each step. Gonzaga and
Todd [38] describe a “primal or dual” potential reduction method based on
F (·, ·) which achieves symmetry between the primal and dual variables in
a fundamentally different way from the algorithm of this section. In [38],
the algorithm takes either a primal step as in (14), or a dual step which is
based on a projected gradient step in the transformed dual variables s̄, after
a scaling of the form s̄ = (Sk)−1s which maps sk to e. It is shown that
for q = n +

√
n, one of these two steps must produce an Ω(1) decrease in

F (·, ·). Mizuno and Nagasawa [56], and Tunçel [81] consider variants of the
primal–dual potential reduction algorithm that use the primal–dual affine
scaling direction. Ye et al. [90] consider modifications of the primal–dual
algorithm based on varying the value of the parameter q in the system used
to derive the primal–dual directions.

6 Enhancements and Extensions

In this section we describe several modifications of the potential reduction
methods described in the previous sections that enhance the theoretical com-
plexity, and/or practical performance, of the algorithms. We also describe
extensions of the algorithms to problems more general than LP.

6.1 Partial Updating

For each of the algorithms described above, the dominant computational
task on each iteration is the formation, and factorization, of an m × m
matrix, requiring O(m2n) operations using standard linear algebra. The
remaining work per iteration is all O(mn). As a result, the total complexity
for Karmarkar’s algorithm is O(m2n2L) operations, and the total complexity
for both the affine and primal–dual potential reduction algorithms (using
q = n+

√
n) is O(m2n1.5L) operations.

17



The above total complexity bounds can be improved using a technique
known as partial updating. Consider Karmarkar’s algorithm, or the affine
potential reduction method. Then the matrix to be formed and factorized
on each iteration is of the form A(Xk)2AT . The idea of partial updating
is to instead maintain a factorization of a matrix A(X̃k)2AT , where x̃k > 0
satisfies

1
ρ
≤ x̃ki
xki
≤ ρ, i = 1, . . . , n, (27)

and ρ > 1 is a O(1) constant. The computations required on each step are
then modified to use the factorization of A(X̃k)2AT , instead of a factoriza-
tion of A(Xk)2AT . Following a step from xk to xk+1, the algorithm first sets
x̃k+1 = x̃k, and then “updates” any indecies i which fail to satisfy (27), for
k = k+1. Each such update produces a rank–one change in A(X̃k+1)2AT , re-
quiring an update of the factorization of A(X̃k+1)2AT that can be performed
in O(m2) operations. See for example Shanno [68] for details of updating
a Cholesky factorization. Karmarkar [44], who introduced the technique,
shows that when his algorithm uses partial updating the number of itera-
tions is still O(nL) but the total number of updates required on all iterations
is only O(n1.5L). As a result, the complexity of Karmarkar’s algorithm us-
ing partial updating is reduced to O(n1.5(m2)L + n(mn)L) = O(m1.5n2L).
In the interior point literature the distinction between m and n is often ig-
nored, in which case partial updating provides a factor-of-

√
n complexity

improvement.
We will not present the details of potential reduction algorithms that

incorporate partial updating, but we will describe some results on the topic.
A serious shortcoming of Karmarkar’s original analysis of partial updating
is that the complexity improvement requires that the algorithm take short
steps (α < 1), instead of performing a linesearch of the potential function.
This restriction makes the technique hopelessly impractical. Anstreicher [6]
shows that with a simple safeguard, a linesearch can be performed when us-
ing partial updating, while still retaining the complexity improvement. Ye
[85] describes a partial updating version of the affine potential reduction al-
gorithm that reduces the total complexity to O(m1.5n1.5L) operations. How-
ever, the analysis of [85], like that in [44], requires that the algorithm take
short steps. Anstreicher and Bosch [13] adapt the safeguarded linesearch of
[6] to the affine potential reduction algorithm, resulting in an O(m1.5n1.5L)
algorithm that can use linesearch to improve the reduction in F (·, ·) on each
iteration. Other partial updating variants of the affine potential reduction
method are devised by Bosch [16], and Mizuno [53], [54].

Partial updating can also be applied to primal–dual algorithms, which are
based on a primal–dual scaling matrix of the form (Xk)1/2(Sk)−1/2. Bosch
and Anstreicher [17] devise an O(m1.5n1.5L) partial updating variant of the

18



primal–dual potential reduction algorithm of [47], that allows for safeguarded
linesearch of F (·, ·) using unequal primal and dual steplengths.

Although partial updating is important from the standpoint of theoreti-
cal complexity, the technique has not been used very much in practice. The
reason for this is quite simple. The complexity improvement from partial
updating is based on worst–case decrease in the potential function, and re-
ducing the number of updates per iteration from n to an average of O(

√
n).

However, in practice algorithms typically achieve potential decreases that are
much better than the worst–case bounds, using long steps that would result
in O(n) updates per iteration. The additional “overhead” required to imple-
ment partial updating then makes the technique uncompetitive. Shanno [68]
and Bosch and Anstreicher [18] present computational results using partial
updating. In [18] it is shown that for certain problem structures partial up-
dating can actually enhance the practical performance of the affine potential
reduction algorithm.

6.2 Long Steps

For each of the algorithms considered above, the steps (in (5), (14), and
(22)) are parameterized using a two–norm steplength. In practice a potential
reduction algorithm can (and generally will) use a steplength having α > 1,
but the performance on such a “long” step cannot be theoretically analyzed.
One way to analyze such long steps, and in so doing perhaps get more
insight into the typical behavior of a potential reduction algorithm, is to
parameterize the step in terms of an infinity–norm, as opposed to two–norm,
steplength.

Consider for example Karmarkar’s algorithm. Instead of the step as in
(5), define a step of the form

x̄ ′ = e− α ∆x̄
‖∆x̄‖∞

. (28)

Proceeding as in the derivation of (7), we then obtain

f(xk+1, zk+1)− f(xk, zk+1)

= (n+ 1) ln

(
1− α‖∆x̄‖2/‖∆x̄‖∞

(c̄− z̄d)T e

)
−
n+1∑
i=1

ln
(

1− α ∆x̄i
‖∆x̄‖∞

)

≤ (n+ 1) ln

(
1− α(‖∆x̄‖/‖∆x̄‖∞)2‖∆x̄‖∞

(c̄− z̄d)T e

)
+
α2(‖∆x̄‖/‖∆x̄‖∞)2

2(1− α)

≤
(
−α+

α2

2(1− α)

)
‖∆x̄‖2

‖∆x̄‖2∞
, (29)

where the first inequality uses Lemma 3.2 and the fact that eT∆x̄ = 0, and
the second uses (4) and ln(1 − t) ≤ −t for t < 1. As in Theorem 3.3, (29)

19



shows that an Ω(1) decrease in f(·, ·) is always possible. However, (29) also
indicates that the decrease on a step of Karmarkar’s algorithm will typically
be much greater. In particular, ‖∆x̄‖2/‖∆x̄‖2∞ is typically Ω(n/ ln(n)) (as
first observed by Nemirovskii [60]), implying that the algorithm can obtain
a potential decrease of Ω(n/ ln(n)) on a single step. From Theorem 2.1, this
magnitude of potential decrease per step results in an O(ln(n)L) iteration
algorithm, in accord with the observation that in practice the convergence
of the algorithm is independent (or nearly independent) of n.

Nesterov and Todd [62] suggest a similar “long step” analysis for the
affine potential reduction algorithm based on f(·, ·), with q = 2n. Let ∆x̄
be as in (11), and suppose that ‖∆x̄‖∞ ≤ η < 1. Let zk+1 = bT y ′, where y ′

is as in (12). It then follows easily that

c̄T e− zk+1 ≤ 1 + η

2
(c̄T e− zk), (30)

and also that

f(xk, zk+1)− f(xk, zk) = q ln

(
c̄T e− zk+1

c̄T e− zk

)
≤ −(1− η)n.

Thus updates of the lower bound now produce an Ω(n) decrease in f(·, ·).
Next consider the situation where ‖∆x̄‖∞ > η. Instead of using the step as
in (14), define

x̄ ′ = e− α ∆x̄
‖∆x̄‖∞

.

Proceeding as in the proof of Lemma 4.2, we obtain

f(xk+1, zk)− f(xk, zk)

≤ −α
(

q

c̄T e− zk
c̄− e

)T ∆x̄
‖∆x̄‖∞

+
α2(‖∆x̄‖/‖∆x̄‖∞)2

2(1− α)

=

(
−α‖∆x̄‖∞ +

α2

2(1− α)

)
‖∆x̄‖2

‖∆x̄‖2∞

≤
(
−αη +

α2

2(1− α)

)
‖∆x̄‖2

‖∆x̄‖2∞
. (31)

As in the case of Karmarkar’s algorithm, (31) assures an Ω(1) decrease in
f(·, zk), but indicates that a much larger decrease will typically occur.

If one considers the affine potential reduction algorithm using F (·, ·),
with q = 2n, then the situation on primal steps, with ‖∆x̄‖∞ ≥ η, is exactly
as above. For dual steps, the effect on F (·, ·) can easily be analyzed as in
the proof of Theorem 4.4. The final result is that on a dual step, where
‖∆x̄‖∞ ≤ η, F (xk, sk) − F (xk, sk+1) ≥ n(1 − 2η)/(2 − 2η), a decrease of

20



exactly n times the bound of Theorem 4.4. However, with q = 2n there is
essentially no reason to measure progress of the algorithm using F (·, ·).

For a more extensive discussion of the use of “long steps” in potential
reduction methods see Nesterov [61], Nesterov and Todd [62], and Todd [78].
The latter also describes a “long step” analysis for the primal–dual potential
reduction algorithm.

6.3 Large–step dual updates

The affine potential reduction method based on F (·, ·), with q = n +
√
n,

was considered a major breakthrough in interior point methods. Previous
O(
√
nL) iteration methods were all of the short–step path–following variety

(see for example [37]), where iterates were constrained to remain within a
small neighborhood of the central trajectory. The affine potential reduction
method, on the other hand, placed no explicit restrictions on the iterates, and
offered the possibility of an O(

√
nL) algorithm that might perform well in

practice. Unfortunately the algorithm does not perform well in practice with
q = n+

√
n. An explanation for this phenomenon was provided by Gonzaga

[34]. With q = n +
√
n, dual updates are performed when ‖∆x̄‖ ≤ η < 1.

The result of such an update is a “small–step” reduction in the gap; in fact
(13) indicates that the gap is reduced by a factor which is no smaller than
1 − (1 + η)/

√
n. On the other hand the algorithm takes primal steps when

‖∆x̄‖ > η, and in this case the “worst–case” reduction in F (·, ·) is only
Ω(1). One might hope that the use of a linesearch on the primal and dual
steps could improve the performance of the algorithm, but in practice (with
q = n+

√
n) this improvement is minimal.

It turns out that it is possible to retain the O(
√
nL) iteration complexity

of the affine potential reduction algorithm while using “larger–step” dual
updates. Consider q = n + ν

√
n, where ν = O(1). The analysis of descent

in F (·, ·) for primal and dual steps is then almost identical to the analysis
with ν = 1, and the bounds provided by Lemma 4.3 and Theorem 4.4 con-
tinue to hold. By Theorem 2.2, the algorithm remains an O(

√
nL) iteration

algorithm. However, the dual update will now result in

cTxk − zk+1

cTxk − zk
≤ n+ η

√
n

n+ ν
√
n
,

so large values of ν produce a better gap reduction on dual steps. In addition,
following such a step one will tend to have a larger value for ‖∆x̄‖, resulting
in a primal step with better potential decrease. This is the rationale behind
the “large step dual update” of [34], although Gonzaga describes the dual
update somewhat differently from the way we describe it here, and bases his
complexity analysis on f(·, ·) rather than F (·, ·).

21



A “truly large” dual step update, with an Ω(1) reduction in the gap, is
provided by using q = 2n. In this case the algorithm can also be analyzed
using an infinity–norm parameterization of the primal step, as described
above. Thus q = 2n produces truly–large–step dual updates, and allows for
long primal steps, leading to a very substantial improvement in the practical
performance of the algorithm.

6.4 Infeasible–Start Methods

The potential reduction algorithms described above all require an initial
primal feasible x0 > 0, and possibly an initial dual feasible s0. As described
in Section 2, it is possible to devise an augmented problem like MLP which
has an initial feasible solution. However, the large value of the parameter
M makes the use of MLP computationally unattractive.

Several approaches have been developed to allow potential reduction al-
gorithms to operate on problems that do not have a known feasible interior
point, without the use of M as in MLP. Phase I – Phase II algorithms use a
formulation similar to MLP, but without the explicit use of the M objective
coefficient. Consider a problem:

min ĉT x̂

Âx̂ = b
dT x̂ = 0
x̂ ≥ 0,

(32)

where x̂ ∈ Rn+1,

Â = (A, b−Ax0), ĉ =
(
c

0

)
, d =

(
0
1

)
,

and x0 > 0. It is not assumed that Ax0 = b. Clearly (32) is equivalent to
LP, and x̂0 given by x̂0

i = x0
i , i = 1, . . . , n, x̂0

n+1 = 1 is feasible for all of the
constraints of (32) except the constraint dT x̂ = 0. The approach of a Phase
I – Phase II potential reduction algorithm is to simultaneously decrease the
usual primal potential function f(·, ·) based on (32), and also decrease a
“Phase I” potential function:

f̂(x̂) = q ln(dT x̂)−
n+1∑
i=1

ln(x̂i).

Algorithms of this type based on Karmarkar’s algorithm, using q = n + 1,
were devised by Anstreicher [4], and Todd [75]. Methods based on the affine
potential reduction algorithm, using f(·, ·) and q ≥ n+

√
n, can be found in

Anstreicher [9], and Todd [76]. It should be noted that even with q = n+
√
n,

22



the latter algorithms cannot use F (·, ·) to improve the complexity of these
methods to O(

√
nL) iterations.

DeGhellinck and Vial [20] describe a variant of Karmarkar’s algorithm,
based on parameterized feasibility problems, that does not require an initial
feasible point. When initialized with a feasible point, the method of [20] is
essentially the “standard form” variant of Karmarkar’s method, as described
in Section 3. Fraley [22] considers an improvement of the lower bound pro-
cedure in [20] when the initial point is not feasible. Freund [27] describes
a Phase I – Phase II affine potential reduction algorithm that uses a single
potential function, and enforces a “balance” between the Phase I and Phase
II objectives through an added constraint.

Freund [25] uses a “shifted barrier” approach to allow for the initialization
of a potential reduction algorithm with an infeasible point. In [25] it is
assumed that Ax0 = b, but that x0 may have negative components. The
usual potential function f(·, ·) is replaced by a function of the form

q ln(cTx− z)−
n∑
i=1

ln(xi + hi(cTx− z)),

where q = n+
√
n, and h > 0 is a “shift” vector such that x0+(cTx0−z0)h >

0. Similarly F (·, ·) is replaced with a potential function that includes the
shifted primal barrier terms. Algorithms based on these perturbed potential
functions have complexities of O(nL) or O(

√
nL) iterations, under various

assumptions regarding the dual feasible region.
In practice, primal–dual “infeasible–interior–point” methods have been

used very successfully to solve linear programs from infeasible starting points.
For a given iterate xk > 0, sk > 0, these algorithms obtain search directions
∆x and ∆s by solving a system of the form:

A∆x = b−Axk
AT∆y + ∆s = c−AT yk − sk

Sk∆x+Xk∆s = γµke−XkSke,
(33)

where 0 ≤ γ ≤ 1, and µk = (xk)T sk/n. (The use of γ = 0 results in
the “primal–dual affine scaling,” or “predictor” step, while γ = 1 gives a
“centering,” or “corrector” step.) The next point is of the form

xk+1 = xk + α∆x, sk+1 = sk + α∆s,

for a step parameter α ≤ 1. Most algorithms based on (33) are of the
path–following, or predictor–corrector variety. However, Mizuno, Kojima
and Todd [55] devise a potential reduction algorithm that uses directions
from (33).

23



6.5 Linear Complementarity Problems

The Linear Complementarity Problem is:

LCP : s−Mx = q

s ≥ 0, x ≥ 0, xT s = 0,

where M is an n × n matrix, and q ∈ Rn. It is well known that for appro-
priate choices of M (see for example [19]), LCP can be used to represent lin-
ear programming, convex quadratic programming, matrix games, and other
problems. Many primal–dual algorithms for LP can be extended to LCP,
under the assumption that M is a positive semidefinite (but not necessarily
symmetric) matrix. In particular, the primal–dual potential reduction algo-
rithm of Section 5 was originally devised as a method for LCP, and retains a
complexity of O(

√
nL) iterations so long as M is positive semidefinite. See

Kojima, Mizuno, and Yoshise [47] for details.
The theory of LCP depends very heavily on the membership of M in

various classes of matrices (for example, positive semidefinite matrices). Ko-
jima et al. [45] discuss the application of interior point algorithms, including
primal–dual potential reduction methods, to LCP problems with different
types of M . Kojima, Megiddo, and Ye [46] analyze a potential–reduction
algorithm in the case that M is a P–matrix (that is, a matrix with positive
principal minors), for which a solution to LCP always exists (see [19]). Ye
[87] analyzes a potential reduction algorithm that obtains an approximate
stationary point of a general LCP, and Ye [88] considers a potential reduction
method for the related problem of approximating a Karush–Kuhn–Tucker
point of a general quadratic programming problem. The last three refer-
ences show that the potential reduction framework can be used to analyze
algorithms that are not polynomial–time methods.

6.6 Linear Programming over Cones

Nesterov and Nemirovskii [64] consider a “conic” extension of the usual linear
programming problem of the form

CLP : min 〈c, x〉
Ax = b

x ∈ K,

where x is in a finite–dimensional real vector space X, c is in the dual space
X∗, b is in a finite–dimensional real vector space Y, A is a linear mapping
from X to Y, and K is a closed, convex, and pointed cone in X. A dual

24



problem for CLP is then

CLD : min 〈b, y〉
A∗y + s = c

s ∈ K∗,

where A∗ : Y∗ → X∗ is the adjoint of A, y ∈ Y, and K∗ ⊂ X∗ is the dual
cone

K∗ = {s ∈ X∗ | 〈x, s〉 ≥ 0 ∀x ∈ K}.

Strong duality holds between CLP and CLD if, for example, CLP and CLD
both have feasible solutions which are interior to the cones K and K∗, re-
spectively. See [64] for more extensive duality results for these problems.
Note that if X = Rn, Y = Rm, and K = Rn

+, the nonnegative orthant,
then CLP is simply LP. It is shown in [64] that CLP actually provides a
formulation for general convex programming.

In [64, Chapter 4] it is shown that Karmarkar’s algorithm, and the affine
potential reduction algorithm, can be extended to problems of the form
CLP so long as the cone K possesses a ϑ–logarithmically–homogeneous bar-
rier. The exact definition of such a barrier, and its properties, are beyond
the scope of this article. We note here only that the complexities of al-
gorithms for CLP depend on the parameter ϑ. For the usual LP problem,
−
∑n
i=1 ln(xi) is an n–logarithmically–homogeneous barrier for Rn

+. Another
important special case takes X to be the space of n × n symmetric matri-
ces, and K the cone of symmetric positive semidefinite matrices. For this
case 〈x, s〉 = tr(xs), where tr(·) denotes the trace of a matrix, K∗ = K,
and the barrier − ln(det(x)) is an n–logarithmically–homogeneous barrier
for K. Problems of the latter type are now commonly refered to as semidef-
inite programming problems, and have a number of significant applications
in combinatorial optimization, control theory, and elsewhere. See Vanden-
berghe and Boyd [82] for an excellent survey of semidefinite programming
applications, and algorithms.

Todd [78] gives a much more extensive discussion of Nesterov and Ne-
mirovskii’s [64] generalization of potential reduction algorithms to CLP. The
extension of a potential reduction algorithm (specifically Ye’s [83] projective
potential reduction method) to semidefinite programming was independently
obtained by Alizadeh [1]. Nesterov and Todd [62], [63] obtain an extension
of the primal–dual potential reduction method to problems of the form CLP
where K and its barrier are self–scaled; see also [78] for a summary of these
results.

Acknowlegement
I would like to thank Rob Freund, Tamas Terlaky, Mike Todd, and Yinyu

Ye for their comments on a draft of this article.

25



References

[1] F. Alizadeh, “Interior point methods in semidefinite programming with
applications to combinatorial optimization,” SIAM J. Opt. 5 (1995) 13-
51.

[2] M.D. Asic, V.V. Kovacevic-Vujcic, and M.D. Radosavljevcic-Nikolic,
“A note on limiting behavior of the projective and the affine rescaling
algorithms, Contemporary Mathematics 114 (1990) 151-157.

[3] K.M. Anstreicher, “A monotonic projective algorithm for fractional lin-
ear programming,” Algorithmica 1 (1986) 483-498.

[4] K.M. Anstreicher, “The worst-case step in Karmarkar’s algorithm,”
Math. Oper. Res. 14 (1989) 294-302.

[5] K.M. Anstreicher, “A combined phase I–phase II projective algorithm
for linear programming,” Math. Prog. 43 (1989) 209-223.

[6] K.M. Anstreicher, “A standard form variant, and safeguarded line-
search, for the modified Karmarkar algorithm,” Math. Prog. 47 (1990)
337-351.

[7] K.M. Anstreicher, “Dual ellipsoids and degeneracy in the projective
algorithm for linear programming,” Contemporary Mathematics 114
(1990) 141-149.

[8] K.M. Anstreicher, “On the performance of Karmarkar’s algorithm over
a sequence of iterations,” SIAM J. Opt. 1 (1991) 22-29.

[9] K.M. Anstreicher, “A combined phase I – phase II scaled potential
algorithm for linear programming,” Math. Prog. 52 (1991) 429-439.

[10] K.M. Anstreicher, “On monotonicity in the scaled potential algorithm
for linear programming,” Linear Algebra Appl. 152 (1991) 223-232.

[11] K.M. Anstreicher, “Strict monotonicity and improved complexity in
the standard form projective algorithm for linear programming,” Math.
Prog. 62 (1993) 517-535.

[12] K.M. Anstreicher, “Large step volumetric potential reduction algo-
rithms for linear programming,” to appear in Annals of O.R. (1996).

[13] K.M. Anstreicher and R.A. Bosch, “Long steps in an O(n3L) algorithm
for linear programming,” Math. Prog. 54 (1992) 251-265.

[14] K.M. Anstreicher and P. Watteyne, “A family of search directions for
Karmarkar’s algorithm,” Operations Research 41 (1993), 759-767.

26



[15] D. Bayer and J.C. Lagarias, “Karmarkar’s linear programming algo-
rithm and Newton’s method,” Math. Prog. 50 (1991) 291-330.

[16] R.A. Bosch, “On Mizuno’s rank one updating algorithm for linear pro-
gramming,” SIAM J. Opt. 3 (1993) 861-867.

[17] R.A. Bosch and K.M. Anstreicher, “On partial updating in a poten-
tial reduction linear programming algorithm of Kojima, Mizuno, and
Yoshise,” Algorithmica 9 (1993) 184-197.

[18] R.A. Bosch and K.M. Anstreicher, “A partial updating algorithm for
linear programs with many more variables than constraints,” Optimiza-
tion Methods and Software 4 (1995) 243-257.

[19] R.W. Cottle, J.-S. Pang, and R.E. Stone, The Linear Complementarity
Problem (Academic Press, Boston, 1992).

[20] G. de Ghellinck and J.–Ph. Vial, “A polynomial Newton method for
linear programming,” Algorithmica 1 (1986) 425-453.

[21] A.V. Fiacco and G.P. McCormick, Nonlinear Programming, Sequen-
tial Unconstrained Minimization Techniques, (John Wiley, New York,
1968); reprinted as Classics in Applied Mathematics Vol. 4, (SIAM,
Philadelphia, 1990).

[22] C. Fraley, “Linear updates for a single-phase projective method,” O.R.
Letters 9 (1990) 169-174.

[23] R.M. Freund, “An analog of Karmarkar’s algorithm for inequality con-
strained linear programs, with a ‘new’ class of projective transforma-
tions for centering a polytope,” O.R. Letters 7 (1988) 9-14.

[24] R.M. Freund, “Polynomial–time algorithms for linear programming
based only on primal scaling and projected gradients of a potential
function,” Math. Prog. 51 (1991) 203-222.

[25] R.M. Freund, “A potential–function reduction algorithm for solving a
linear program directly from an infeasible ‘warm start’,” Math. Prog.
52 (1991) 441-466.

[26] R.M. Freund,“Projective transformations for interior–point algorithms,
and a superlinearly convergent algorithm for the w-center problem,”
Math. Prog. 58 (1993) 385-414.

[27] R.M. Freund, “A potential reduction algorithm with user–specified
phase I–phase II balance for solving a linear program from an infea-
sible warm start,” SIAM J. Opt. 5 (1995) 247-268.

27



[28] D.M. Gay, “A variant of Karmarkar’s linear programming algorithm for
problems in standard form,” Math. Prog. 37 (1987) 81-90.

[29] P. Gill, W. Murray, M. Saunders, J. Tomlin, and M. Wright, “On pro-
jected Newton barrier methods for linear programming and an equiv-
alence to Karmarkar’s projective method,” Math. Prog. 36 (1986) 183-
209.

[30] D. Goldfarb and S. Mehrotra, “Relaxed variants of Karmarkar’s algo-
rithm for linear programs with unknown optimal objective value,” Math.
Prog. 40 (1988), 183-195.

[31] D. Goldfarb and S. Mehrotra, “A relaxed version of Karmarkar’s
method,” Math. Prog. 40 (1988), 289-315.

[32] C.C. Gonzaga, “Conical projection algorithms for linear programming,”
Math. Prog. 43 (1989) 151-173.

[33] C.C. Gonzaga, “Polynomial affine algorithms for linear programming,”
Math. Prog. 49 (1991) 7-21.

[34] C.C. Gonzaga, “Large–step path following methods for linear program-
ming, part II: potential reduction method,” SIAM J. Opt. 1 (1991)
280-292.

[35] C.C. Gonzaga, “Interior point algorithms for linear programs with in-
equality constraints,” Math. Prog. 52 (1991) 209-225.

[36] C.C. Gonzaga, “On lower bound updates in primal potential reduction
methods for linear programming,” Math. Prog. 52 (1991) 415-428.

[37] C.C. Gonzaga, “Path–following methods for linear programming,”
SIAM Review 34 (1992) 167-224.

[38] C.C. Gonzaga and M.J. Todd, “An O(
√
nL)-iteration large-step primal–

dual affine algorithm for linear programming,” SIAM J. Opt. 2 (1992)
349-359.

[39] P. Huard, “Resolution of mathematical programming with nonlinear
constraints by the method of centres,” in Nonlinear Programming, J.
Abadie, editor (North–Holland, Amsterdam, 1967).

[40] H. Imai, “On the convexity of the multiplicative version of Karmarkar’s
potential function,” Math. Prog. 40 (1988) 29-32.

[41] M. Iri and H. Imai, “A multiplicative barrier function method for linear
programming,” Algorithmica 1 (1986) 455-482.

28



[42] B. Jansen, C. Roos, and T. Terlaky, “The theory of linear programming:
skew symmetric self–dual problems and the central path,” Optimization
29 (1993) 225-233.

[43] J. Ji and Y. Ye, “A complexity analysis for interior–point algorithms
based on Karmarkar’s potential function,” SIAM J. Opt. 4 (1994) 512-
520.

[44] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” Combinatorica 4 (1984) 373-395.

[45] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, “A unified approach
to interior point algorithms for linear complementarity problems,” Lec-
ture Notes in Computer Science 538 (Springer-Verlag, Berlin, 1991).

[46] M. Kojima, N. Megiddo, and Y. Ye, “An interior point potential reduc-
tion algorithm for the linear complementarity problem,” Math. Prog. 54
(1992) 267-279.

[47] M. Kojima, S. Mizuno, and A. Yoshise, “An O(
√
nL) iteration potential

reduction algorithm for linear complementarity problems,” Math. Prog.
50 (1991) 331-342.

[48] C. McDiarmid, “On the improvement per iteration in Karmarkar’s al-
gorithm for linear programming,” Math. Prog. 46 (1990) 299-320.

[49] N. Megiddo and M. Shub, “Boundary behavior of interior point algo-
rithms in linear programming,” Math. Oper. Res. 14 (1989), 97-146

[50] J.E. Mitchell, “Updating lower bounds when using Karmarkar’s projec-
tive algorithm for linear programming,” JOTA 78 (1993) 127-142.

[51] J.E. Mitchell and M.J. Todd, “On the relationship between the search
directions in the affine and projective variants of Karmarkar’s linear
programming algorithm,” in Contributions to Operations Research and
Economics: The Twentieth Anniversary of CORE, B. Cornet and H.
Tulkens, editors, MIT Press (Cambridge, MA, 1989) 237-250.

[52] J.E. Mitchell and M.J. Todd, “A variant of Karmarkar’s linear program-
ming algorithm for problems with some unrestricted variables,” SIAM
J. Matrix Anal. Appl. 10 (1989) 30-38.

[53] S. Mizuno, “A rank one updating algorithm for linear programming,”
The Arabian Journal for Science and Engineering 15 (1990) 671-677.

[54] S. Mizuno, “O(nρL) iteration O(n3L) potential reduction algorithms
for linear programming,” Linear Algebra Appl. 152 (1991) 155-168.

29



[55] S. Mizuno, M. Kojima, and M.J. Todd, “Infeasible-interior-point
primal-dual potential-reduction algorithms for linear programming,”
SIAM J. Opt. 5 (1995) 52-67.

[56] S. Mizuno and A. Nagasawa, “A primal–dual affine scaling potential
reduction algorithm for linear programming,” Math. Prog. 62 (1993)
119-131.

[57] R.D.C. Monteiro, “Convergence and boundary behavior of the projec-
tive scaling trajectories for linear programming,” Contemporary Math-
ematics 114 (1990) 213-229.

[58] R.D.C. Monteiro, “On the continuous trajectories for a potential re-
duction algorithm for linear programming,” Math. Oper. Res. 17 (1992)
225-253.

[59] M. Muramatsu and T. Tsuchiya, “A convergence analysis of a long–step
variant of the projective scaling algorithm,” The Institute of Statistical
Mathematics (Tokyo, Japan, 1993); to appear in Math. Prog.

[60] A.S. Nemirovskii, “An algorithm of the Karmarkar type,” Soviet Jour-
nal on Computers and Systems Sciences 25 (1987) 61-74.

[61] Y.E. Nesterov, “Long–step strategies in interior point potential–
reduction algorithms,” Dept. SES-COMIN, University of Geneva
(Geneva, Switzerland, 1993).

[62] Y.E. Nesterov and M.J. Todd, “Self–scaled barriers and interior–point
methods for convex programming,” Technical Report 1091, School of
OR/IE, Cornell University (Ithaca, NY, 1994); to appear in Math. Oper.
Res..

[63] Y.E. Nesterov and M.J. Todd, “Primal–dual interior point methods for
self–scaled cones,” Technical Report 1125, School of OR/IE, Cornell
University (Ithaca, NY, 1995).

[64] Y. Nesterov and A. Nemirovskii, Interior–Point Polynomial Algorithms
in Convex Programming (SIAM, Philadelphia, 1994).

[65] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity (Prentice–Hall, 1982).

[66] M.J.D. Powell, “On the number of iterations of Karmarkar’s algorithm
for linear programming,” Math. Prog. 62 (1993) 153-197.

[67] A.E. Steger, “An extension of Karmarkar’s algorithm for bounded linear
programming problems,” M.S. Thesis, State University of New York
(Stonybrook, NY, 1985).

30



[68] D.F. Shanno, “Computing Karmarkar projections quickly,” Math. Prog.
41 (1988) 61-71.

[69] D. Shaw and D. Goldfarb, “A path-following projective interior point
method for linear programming,” SIAM J. Opt. 4 (1994) 65-85.

[70] K. Tanabe, “Centered Newton method for mathematical program-
ming,” Lecture Notes in Control and Information Sciences 113
(Springer–Verlag, Berlin, 1988) 197-206.

[71] M.J. Todd, “Exploiting special structure in Karmarkar’s linear pro-
gramming algorithm,” Math. Prog. 41 (1988) 97-113.

[72] M.J. Todd, “Improved bounds and containing ellipsoids in Karmarkar’s
linear programming algorithm,” Mathematics of Operations Research
13 (1988) 650-659.

[73] M.J. Todd, “The effects of degeneracy and null and unbounded variables
on variants of Karmarkar’s linear programming algorithm,” in Large
Scale Numerical Optimization, T.F. Coleman and Y. Li, editors (SIAM,
Philadelphia, 1990).

[74] M.J. Todd, “A Dantzig–Wolfe–like variant of Karmarkar’s interior–
point linear programming algorithm,” Operations Research 38 (1990)
1006-1018.

[75] M.J. Todd, “On Anstreicher’s combined phase I–phase II projective
algorithm for linear programming,” Math. Prog. 55 (1992) 1-15.

[76] M.J. Todd, “Combining phase I and phase II in a potential reduction
algorithm for linear programming,” Math. Prog. 59 (1993) 133-150.

[77] M.J. Todd, “Interior–point algorithms for semi–infinite programming,”
Math. Prog. 65 (1994) 217-245.

[78] M.J. Todd, “Potential–reduction methods in mathematical program-
ming,” School of IE/OR, Cornell University (Ithaca, NY, 1995); to ap-
pear in Math. Prog.

[79] M.J. Todd and B.P. Burrell, “An extension of Karmarkar’s algorithm
for linear programming using dual variables,” Algorithmica 1 (1986)
409-424.

[80] M.J. Todd and Y. Ye, “A centered projective algorithm for linear pro-
gramming,” Math. Oper. Res. 15 (1990) 508-529.

[81] L. Tunçel, “Constant potential primal–dual algorithms: a framework,”
Math. Prog. 66 (1994) 145-159.

31



[82] L. Vandenberghe and S. Boyd, “Positive definite programming,” Dept.
of Electrical Engineering, Stanford University (Stanford, CA, 1994); to
appear in SIAM Review.

[83] Y. Ye, “A class of projective transformations for linear programming,”
SIAM J. Comp. 19 (1990) 457-466.

[84] Y. Ye, “A ‘build down’ scheme for linear programming,” Mathematical
Programming 46 (1990) 61-72.

[85] Y. Ye, “An O(n3L) potential reduction algorithm for linear program-
ming,” Math. Prog. 50 (1991) 239-258.

[86] Y. Ye, “A potential reduction algorithm allowing column generation,”
SIAM J. Opt. 2 (1992), 7-20.

[87] Y. Ye, “A fully polynomial–time approximation algorithm for comput-
ing a stationary point of the general LCP,” Math. Oper. Res. 18 (1993)
334-345.

[88] Y. Ye, “On the complexity of approximating a KKT point of quadratic
programming,” Dept. of Management Sciences, University of Iowa (Iowa
City, IA, 1995).

[89] Y. Ye and M. Kojima, “Recovering optimal dual solutions in Kar-
markar’s polynomial algorithm for linear programming,” Math. Prog.
39 (1987) 305-317.

[90] Y. Ye, K.O. Kortanek, J.A. Kaliski, and S. Huang, “Near–boundary
behavior of primal–dual potential reduction algorithms for linear pro-
gramming,” Math. Prog. 58 (1993) 243-255.

[91] Y. Ye, M.J. Todd, and S. Mizuno, “An O(
√
nL)-iteration homoge-

neous and self-dual linear programming algorithm,” Math. Oper. Res.
19 (1994) 53-67.

32


