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Abstract We consider a bound for the maximum-entropy sampling problem (MESP) that
is based on solving a max-det problem over a relaxation of the Boolean quadric polytope
(BQP). This approach to MESP was first suggested by Christoph Helmberg over 15 years
ago, but has apparently never been further elaborated or computationally investigated. We
find that the use of a relaxation of BQP that imposes semidefiniteness and a small number of
equality constraints gives excellent bounds on many benchmark instances. These bounds can
be further tightened by imposing additional inequality constraints that are valid for the BQP.
Duality information associated with the BQP-based bounds can be used to fix variables to
0/1 values, and also as the basis for the implementation of a “strong branching” strategy. A
branch-and-bound algorithm using the BQP-based bounds solves some benchmark instances
of MESP to optimality for the first time.

Keywords Maximum-entropy sampling · semidefinite programming · semidefinite
optimization · Boolean quadric polytope

Mathematics Subject Classification (2010) 90C22 · 90C26 · 62K05

1 Introduction

Let C be an n×n symmetric positive definite matrix and let s be an integer with 0 < s < n.
For subsets S and T of N := {1,2, . . . ,n}, we let C[S,T ] denote the submatrix of C having
rows indexed by S and columns indexed by T . The maximum-entropy sampling problem is

MESP : z(C,s) := max{ldet C[S,S] : S⊂ N, |S|= s} ,

where ldet denotes the natural logarithm of the determinant. The MESP was introduced in
[18] and applied to the design of environmental monitoring networks in [7,21]. In a typical
application, C is a sample covariance matrix obtained from time-series observations of an
environmental variable at n locations, and it is desired to choose s locations from which to
conduct subsequent data collection so as to maximize the information obtained. The use of
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entropy as a selection criterion, together with the assumption that values at the n locations
are drawn from a multivariate normal distribution, then leads naturally to MESP because
ldetC[S,S] is, up to constants, the entropy of the Gaussian random variables having covari-
ance matrix C[S,S]. It is also possible to consider a constrained version of MESP, CMESP
[11], that includes additional linear constraints of the form ∑ j∈S ai j ≤ bi, i = 1, . . . ,m. In the
environmental monitoring context, such constraints can arise from considerations including
budget limits and cardinality constraints associated with subsets of N.

The MESP is an interesting example of a nonlinear discrete optimization problem, and
algorithms for the problem have been the subject of considerable investigation; see for ex-
ample the survey articles [12,13]. An exact algorithm to compute a maximum-entropy de-
sign using the “branch-and-bound” (B&B) framework was first introduced in [10], where
it is also shown that the problem is NP-hard. A key ingredient for B&B algorithms is the
methodology for producing an upper bound on z(C,s). Subsequent nodes in the B&B tree,
corresponding to indices being fixed into or out of S, result in problems of the same form
as MESP but with different data (C′,s′). A fast method that can provide a reasonably sharp
upper bound on z(C,s) is critical to the success of such an approach. A variety of different
bounding methods have been developed and investigated [1–4,9,10,14], and several of these
methods have been incorprated into complete B&B algorithms. Recent results using the
“masked spectral bound” [1,4] are perhaps the most promising so far, although optimizing
this bound requires the approximate solution of a nondifferentiable, nonconvex eigenvalue
problem over a semidefiniteness constraint.

In this paper we consider a bound for the MESP that is based on solving a max-det (or
max-ldet) problem over a convex relaxation of the Boolean quadric polytope (BQP). This
bound was suggested by Christoph Helmberg over 15 years ago [12,13] but has apparently
never been elaborated or computationally investigated. In the next section we describe the
basic BQP-based bound, which can be written as the maximization of a concave function
over semidefiniteness and linear equality constraints. The BQP bound, like the NLP bound
[2,3], is sensitive to a scaling of the covariance matrix C. We describe an initial scaling
that has performed well computationally, as well as a simple updating procedure that can
be used to improve the scaling of C. Computational results using a benchmark data set with
n = 63 show that the BQP bound performs very well compared to a number of other bounds
for MESP, including the optimized masked spectral bound [1,4]. In Section 3 we consider
strengthening the basic BQP bound by adding additional linear inequalities that are valid for
the BQP. The addition of a large number of linear inequalities to the nonlinear SDP results in
a problem that quickly becomes computationally challenging. We describe an approach that
avoids these computational difficulties by using a linearization of the objective, resulting in a
linear SDP which is computationally more tractable and still produces a rigorous bound. We
illustrate the effect of adding additional inequality constraints using the same problems with
n = 63 that were considered in Section 2. In Section 4 we describe variable-fixing logic that
can potentially be used to fix variables in the BQP relaxation to 0/1 values. For the original
BQP bound, which is based on a nonlinear SDP, this logic is specialized for the particular
structure of the problem. Variable fixing can also be based on the linearized SDP, in which
case a procedure based on existing theory for fixing variables in SDP relaxations [8] can be
adapted. In Section 5 we describe the implementation of a complete B&B algorithm using
the BQP-based bounds. This algorithm has state-of-the-art performance on the instances
with n = 63, and also obtains the first optimal solutions of some instances based on a larger
benchmark data set with n = 124. Statistics from the B&B solution process illustrate the
considerable effect that the variable-fixing procedures described in Section 4 have when
implemented within a B&B framework.
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Notation: I is an identity matrix, E is a matrix of all ones and e is a vector of all ones, with
the dimension implicit for all three. For a square matrix X , diag(X) is the vector of diagonal
entries of X while for a vector x, Diag(x) is the diagonal matrix such that x = diag(Diag(x)).
X � 0 denotes that a matrix X is symmetric and positive semidefinite, A ◦B denotes the
Hadamard (i.e., element-wise) product, and A •B denotes the matrix inner product A •B =
tr(ABT ).

2 The BQP bound

The Boolean quadric polytope (BQP) [15] is usually defined as

Co{(x,y) |x ∈ {0,1}n,y ∈ {0,1}(
n
2), yi j = xix j, 1≤ i < j ≤ n},

where Co{·} denotes the convex hull. For our purposes it is convenient to consider elements
of the BQP to be matrices X � 0, and so we define BQP to be Co{xxT |x ∈ {0,1}n}. The
two definitions are clearly equivalent; the second repeats the variables above and below the
diagonal of X and uses the fact that x = diag(xxT ) if x ∈ {0,1}n. A relaxation of the MESP
using the BQP can then be written

max ldet(C ◦X + I−Diag(x))

s.t. eT x = s (1)

X ∈ BQP, x = diag(X).

Note that the above problem is indeed a relaxation and not an exact representation of MESP
because MESP corresponds to maximizing the objective over the extreme points of the BQP.
However, since the objective in (1) is concave, the solution will generally not be at an ex-
treme point. The problem (1) is not tractable as written because the constraint that X ∈ BQP
cannot be exactly enforced. However, by replacing this constraint with constraints on X that
are valid for BQP we can obtain a further relaxation that is tractable. The basic relaxation
that we will consider is

max ldet(C ◦X + I−Diag(x))

s.t. eT x = s, Xe = sx (2)

X � xxT , x = diag(X).

Note that the constraints X � xxT , x = diag(X) of (2) imply that 0≤ x≤ e. The problem (2)
without the constraints Xs= sx is exactly the relaxation suggested by Helmberg [12,13]. The
additional equality constraints Xe = sx can be viewed as reformulation-linearization tech-
nique (RLT) [17] constraints obtained by multiplying both sides of the constraint eT x = s in
turn by each xi, and then replacing terms of the form xix j with Xi j. We find that these addi-
tional constraints have a small effect on the solution value in (2), but can have a significant
effect on the variable-fixing logic considered in Section 4.

In this paper we will focus on MESP, but it is worth noting that the relaxation (2) can
easily be adapted to the constrained version of the problem, CMESP, that contains addi-
tional linear constraints ∑ j∈S ai j ≤ bi, i = 1, . . . ,m. In addition to the inequality constraints
∑

n
j=1 ai jx j ≤ bi, i = 1, . . . ,m, it would be natural to consider RLT constraints formed from

pairs of these constraints [17]. We omit the details. The fact that such linear constraints can
be directly added to the relaxation (2), as is also the case with the NLP bound [2,3], is a
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considerable advantage over other bounds for CMESP, such as the eigenvalue-based bound
for CMESP described in [11].

Duality for determinant maximization problems is described in [20], but the form of the
problems considered there is somewhat different than (2) making the results awkward to
apply. To derive the dual to (2) it is convenient to re-write the problem using matrices

Y =

(
1 xT

x X

)
, Ĉ =

(
0 0
0 C− I

)
.

When working with Y and Ĉ we index rows and columns from 0 to n, so for example Y00 = 1.
Then (2) can be written in the form

max ldet(Ĉ ◦Y + I)

s.t. Ai •Y = bi, i = 1, . . . ,m, (3)

Y � 0,

where each Ai is a symmetric matrix and the constraints Ai •Y = bi, i = 1, . . . ,m = 2(n+1)
express the equality constraints of (2) and the additional constraint Y00 = 1. To obtain the
dual of (3) we form the Lagrangian

L(u,T,Y ) = ldet(Ĉ ◦Y + I)+T •Y +
m

∑
i=1

ui(bi−Ai •Y ) (4)

and consider the Lagrangian dual problem

min
u,T�0

max
Y

L(u,T,Y ).

Since the Lagrangian is concave in Y for any fixed (u,T ), the gradient in Y must be zero at
the maximizer, and therefore

(Ĉ ◦Y + I)−1 ◦Ĉ + T −
m

∑
i=1

uiAi = 0.

Let
S = (Ĉ ◦Y + I)−1 � 0. (5)

We then have

S◦Ĉ−
m

∑
i=1

uiAi =−T � 0, (6)

and

(T −
m

∑
i=1

uiAi)•Y = −((Ĉ ◦Y + I)−1 ◦Ĉ)•Y

= −(Ĉ ◦Y + I)−1 • (Ĉ ◦Y )

= −(Ĉ ◦Y + I)−1 • (Ĉ ◦Y + I)+S• I

= tr(S)− (n+1). (7)

Substituting (7) into (4), at the maximizer Y we then have

L(u,T,Y ) = bT u− ldet(S)+ tr(S)− (n+1),
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and the Lagrangian dual can be written as the problem

min bT u− ldet(S)+ tr(S)− (n+1)
s.t. S◦Ĉ−∑

m
i=1 uiAi � 0.

(8)

Note that the constraint in (8) is homogenous, so the variables (u,S) can be scaled by any
positive factor. Examining the effect of such a scaling on the objective of (8), it is easy to
calculate that to minimize the objective we should have bT u+ tr(S) = n+1. As a result, (8)
can be written in the alternative form

min − ldet(S)

s.t. tr(S)+bT u = n+1

S◦Ĉ−
m

∑
i=1

uiAi � 0.

In applying a bound for MESP, for example the BQP bound of (2), there are two trans-
formations of the data C that can be applied to potentially improve the bound obtained:
applying a scale factor to C, and working with the complementary problem. Both of these
transformations were first introduced in the context of the NLP bound [2,3].

Scale factor. Note that for the MESP with data matrix C, and a positive scalar γ , z(γ C,s) =
z(C,s)+s lnγ . As a result, in applying any bound for MESP we are free to scale C by a value
γ and then adjust the resulting bound by subtracting s lnγ . Some bounds for the MESP, in-
cluding the eigenvalue bound [10] and the masked spectral bound [1,4] are invariant to such
a scaling operation. However the BQP bound (2), like the NLP bound [2,3] is sensitive to
the choice of scaling factor. To evaluate the possibility of improving the bound by changing
the scale factor it is useful to consider the function

v(γ,X) = ldet((γC− I)◦X + I)− s lnγ.

Using the well-known fact [5, p.75] that ∂ ldet(X)/∂X = X−1, we have

∂

∂γ
v(γ,X) = F(γ,X)−1 • (C ◦X)− s/γ,

where F(γ,X) = (γ C− I) ◦X + I. For γ to be a minimizer of v(γ,X) we then require that
γF(γ,X)−1 • (C ◦X) = s, which is equivalent to

F(γ,X)−1 • (I−Diag(x)) = n− s. (9)

There are several ways in which (9) can be used to attempt to improve the scale factor γ . For
example, if X is the solution of (2) for some γ , we can use the fact [5, p.64] that

∂

∂γ
F(γ,X)−1 • (I−Diag(x)) =−(e− x)T diag

(
F(γ,X)−1(C ◦X)F(γ,X)−1) (10)

to make a first-order correction to γ in an attempt to satisfy (9). Note that (10) implies that
the left-hand side of (9) is monotonically decreasing in γ , so (9) has a unique solution.
However, if γ is changed then (2) must be re-solved with the new scaling factor applied, so
X may also change.
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Fig. 1 Entropy gaps for bounds applied to n = 63 instances

Complementary problem. For any set S⊂N = {1,2, . . . ,n} let S denote the complementary
set S = N \S. Using the identity

ldetC[S,S] = ldetC+ ldetC−1[S,S],

we have the identity z(C,s) = z(C−1,n− s)+ ldetC. As a result, given an instance of MESP
we are free to instead work with the “complementary problem” that replaces C with C−1

and s with n− s. Any bound applied to the complementary problem, adjusted by subtracting
ldet C, then gives a bound for the original problem. The eigenvalue bound [10] is the same
when applied to the original and complementary problems, but most other bounds for MESP
can differ when applied to the two problems. It is typically the case that the bound based on
the original problem is better for small values of s while the bound based on the comple-
mentary problem is better for large values of s, but where exactly one bound becomes better
than the other can only be determined by computing both.

To evaluate the basic BQP bound (2) we consider MESP problems using a matrix C with
n = 63, from [7]. This data has been previously used to evaluate several other bounds for
MESP, facilitating comparsions between the various bounds. In Figure 1 we give the gap
in objective between several bounds and the best feasible solution generated by a heuristic
[10] for s = 3,4, . . . ,60. The eigenvalue, diagonal and “One Big” bounds are all special
cases of the masked spectral bound. The eigenvalue bound is the same for the original and
complementary problems; for all other bounds the value reported is the better of the two.
The values for the optimized masked spectral bound (MS) are taken from the computational
results of [4]; these are somewhat better than values previously computed in [1] when the
bound for the original problem is better than the bound for the complementary problem
(n ≤ 26). Values for the BQP bound are reported using a scale factor based on the initial
choice γ = 1/diag(C)[s], where diag(C)[s] is the s’th largest component of diag(C), followed
by one first-order correction based on (9) and (10), requiring the solution of two problems
of the form (2). The BQP bound is computed using the Matlab-based SDPT3 solver, version
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Fig. 2 Entropy gaps for bounds on n = 63, s = 31 instance

4.0 [19], which supports max-ldet terms in the objective1 . For problems of this size the CPU
time required to solve a single instance of (2) on a PC with an Intel i7-6700 CPU running at
3.40 GHz, with 16G of RAM and a 64-bit OS is approximately 5 seconds. It is clear from the
figure that the performance of the BQP bound is outstanding on these problems. In Figure 2
we compare gaps on the instance with n = 63, s = 31 for the bounds from Figure 1 and two
additional bounds; the spectral partition bound (SP) from [9], and an integer-programming
based bound (IP) from [14]; the latter was the best known bound for this instance prior to
the BQP bound.

3 Adding inequality constraints

One approach to improving the basic BQP bound for MESP from the previous section is
to add inequality constraints that are valid for the Boolean quadric polytope [15]. Such
constraints include the RLT constraints

Xi j ≥ 0, Xi j ≥ 1− xi− x j, Xi j ≤ xi, Xi j ≤ x j, (11)

for all i < j, as well as the triangle inequalities

Xi j +Xik−X jk ≤ xi,

Xi j +X jk−Xik ≤ x j,

Xik +X jk−Xi j ≤ xk,

1+Xi j +Xik +X jk ≥ xi + x j + xk,

for all i < j < k. Due to the large number of such constraints (especially the triangle inequal-
ities) it is inadvisable to add all of the RLT constraints and/or triangle inequalities a priori.
A more efficient methodology is to first solve the basic BQP relaxation, and then generate
a managable number of violated inequalities to add to the relaxation [16]. This process can

1 The CVX system for convex programming [6] recognizes concavity of the objective in (2), but unfortu-
nately does not process the resulting problem efficiently even when the SDPT3 solver is available
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be repeated for several “rounds” so as to avoid generating a large number of redundant in-
equalities that would seriously degrade the performance of an interior-point solver such as
SDPT3.

We have applied this approach to the instances with n= 63 described in the previous sec-
tion. Although the SDPT3 solver performs well on the basic BQP relaxation with a log-det
objective and added equality constraints, we find that the solver often encounters numerical
problems with a modest number (a few hundred) of added linear inequalities. To circum-
vent this problem, we consider a linearization of the objective that still produces a rigorous
bound, but allows us to solve a purely linear SDP as opposed to a problem with the nonlinear
log-det objective. Note that since ldet(·) is concave, we have

ldet(Ĉ ◦Y + I)≤ ldet(Ĉ ◦Y + I)+G(Y )• (Y −Y ) (12)

for any Y such that (Ĉ ◦Y + I) � 0, where G(Y ) = (Ĉ ◦Y + I)−1 ◦ Ĉ is the gradient of
ldet(Ĉ ◦Y + I) at Y = Y . Using (12) we can obtain a rigorous bound by solving the linear
SDP

max G(Y )•Y
s.t. Ai •Y = bi, i = 1, . . . ,m,

Bi •Y ≤ di, i = 1, . . . , p,
Y � 0,

(13)

where Y is the solution of the original BQP relaxation, and each constraint Bi •Y ≤ di cor-
responds to an RLT or triangle inequality. In addition to avoiding numerical difficulties
when inequalities are added to the log-det problem, note that (12) is valid for any Y with
(Ĉ ◦Y + I) � 0, so that the linearized problem (13) can be used to obtain a rigorous bound
even if Y does not satisfy the desired optimality conditions for (3). In Figure 3 we illustrate
the effect of adding inequality constraints, using the linearized problem (13) where Y is the
solution of (3), adding RLT and triangle inequalities in two “rounds” where on each round
the tolerance for violated inequalities is set so as to generate a maximum of 2,000 con-
straints. (For the cases s = 3, . . . ,60 the median total number of inequality constraints p was
about 3,000, with a maximum of 3,852 and a minimum of 142.) In Figure 3 the gaps based
on (12) and (13) are labeled BQP+. As can be seen from the figure, the addition of inequality
constraints has very little effect on the instances with s ≤ 9, for which the original bound
was better than the bound using the complementary problem. For the remaining instances,
where the bound using the complementary problem is better, the addition of inequality con-
straints has a relatively small absolute effect but does reduce the gap by a nontrivial fraction
for the cases where the gap from the original BQP relaxation was the highest.

4 Fixing variables

Because the BQP bound is based on a convex programming relaxation, convex duality can
be used to devise variable-fixing logic that may permit some variables to be set at 0/1 values
if the gap between the relaxation objective value and optimum (or best known) objective
value is sufficiently small. Such logic has the potential to substantially reduce the amount of
branching in a B&B algorithm, and is a significant feature for the BQP bound compared to
other bounds (including the eigenvalue and masked spectral bounds) for which no such logic
is possible. Variable-fixing logic is possible for the NLP bound [2,3] and was a significant
contributor to the computational success reported in [3].
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Fig. 3 Effect of adding inequality constraints on n = 63 instances

For the BQP bound there are at least two different methodologies that can be applied
to devise variable-fixing logic. We will describe both in some detail since our experience is
that neither methodology dominates the other in computational experiments.

Methodology I. One approach to fixing variables is based on the dual problem (8). Consider
for example adding the constraint eieT

i •Y = 1 to (3), corresponding to the constraint xi = 1
in (2)2. The dual problem (8) with this added constraint can then be written as

min bT u+ω− ldet(S)+ tr(S)− (n+1)
s.t. S◦Ĉ � ωeieT

i +∑
m
i=1 uiAi.

(14)

Let (ū,S) denote the solution to (8). Assuming that Ĉii 6= 0, for any ω 6= 0 a feasible solution
to (14) is then u = ū,

S = S+
ω

Ĉii
eieT

i = S1/2
(

I +
ω

Ĉii
S−1/2eieT

i S−1/2
)

S1/2
.

For such an S the objective value in (14) is equal to

z(ω) = z(0)+ω

(
1+

1

Ĉii

)
− ln

(
1+

ωσi

Ĉii

)
, (15)

where z(0) is the solution objective value in (8) and σ = diag(S−1
). A straightforward dif-

ferentiation shows that the minimum in (15) occurs at

ω
∗ = Ĉii

(
1

Ĉii +1
− 1

σi

)
.

Substituting this value into (15), recalling that Ĉii =Cii−1, then obtains z(ω∗) = z(0)+δ 1
i ,

where

δ
1
i = ln

(
Cii

σi

)
+1− Cii

σi
.

2 Recall that in (3) we index the rows and colums of Y , Ĉ and S beginning with zero.
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Note that if the primal problem (3) has been solved, then the solution dual matrix S is given
by (5), and therefore σi =Ciix̄i+1− x̄i for each i. Finally, the above derivation assumed that
Ĉii 6= 0, but if Ĉii = 0 then the above formulas correctly give ω∗ = 0 and z(ω∗) = z(0), the
latter because (5) and Ĉii = 0 together imply that σi = 1.

Let v be the objective value corresponding to a feasible solution of MESP. If z(0)+δ 1
i <

v, then we have a proof that Yii = xi = 0 in any optimal solution of (2), and in this case the
instance of MESP can be reduced by deleting the ith row and column of C.

Similar logic can be applied to evaluate the effect of setting xi = 0 in (2). In this case
the constraint added to (3) is eieT

i •Y = 0, the objective in (14) does not contain the term ω ,
and the expression for z(ω) differs from (15) by not containing the term ω . Differentiating
the modified expression for z(ω) to obtain the optimal ω results in

ω
∗ = Ĉii

(
σi−1

σi

)
,

and substituting in to obtain the objective value in the modified version of (14) results in
z(ω∗) = z(0)+δ 0

i , where

δ
0
i = ln

(
1
σi

)
+1− 1

σi
.

In this case z(0)+δ 0
i < v implies that xi = 1 in any optimal solution of (2). In MESP, fixing

a set of indices F ⊂ N into S can be accomplished [10] by forming the reduced problem
where C is replaced by the Shur complement

C[N′,N′]−C[N′,F ]C[F,F ]−1 C[F,N′], (16)

where N′ =N \F , s is replaced with s′ = s−|F |, and the objective is adjusted by the constant
ldet C[F,F ].

Methodology II. An alternative approach for variable fixing is based on using the linearized
problem (13), with or without the additional inequality constraints Bi •Y ≤ di, i = 1 . . . , p.
General theory for variable fixing in linear SDP problems is considered in [8]. For a problem
with constraints corresponding to the BQP, the approach in [8] would be to first transform
the problem to an equivalent one with constraints in max-cut form. In our application, the
presence of the trace constraint eT diag(X) = s facilitates applying the variable-fixing logic
without applying this transformation. We will work with the dual of (13), which is the linear
SDP problem

min bT u+dT w

s.t. G(Y )−
m

∑
i=1

uiAi−
p

∑
i=1

wiBi � 0 (17)

w≥ 0.

First consider the logic to impose the constraint xi = 1. Similar to the approach taken in
Methodology I, we add the constraint eieT

i •Y = 1 to (13). Let (ū, w̄) be an optimal solution
to (17), and let µ be the dual variable corresponding to this new constraint. Assume that the
trace constraint is written in the form eT diag(Y ) = s+1, that this is the equality constraint
with i = 1, and let u1 = ū1 +ω . We consider a restricted dual problem of the form:

min bT ū+dT w̄+(s+1)ω−µ

s.t. G(Y )−
m

∑
i=1

ūiAi−
p

∑
i=1

w̄iBi−ωI +µeieT
i � 0 (18)

ω ≥ 0.



Maximum-Entropy Sampling and the Boolean Quadric Polytope 11

Let T = ∑
m
i=1 ūiAi +∑

p
i=1 w̄iBi−G(Y )� 0. Ignoring the constant term in the objective, (18)

can be written in the form

min (s+1)ω−µ

s.t. ωI−µeieT
i �−T

w≥ 0.

Assume that T = QΛQT , where Q is an orthonormal matrix and Λ is a diagonal matrix with
λ = diag(Λ)≥ 0. The constraint ωI−µeieT

i �−T is then equivalent to ωI−µqqT �−Λ ,
where q = QT ei. Assuming that µ > 0,ω > 0, this constraint is in turn equivalent to the
constraints

ωI +Λ � µqqT

I � µ(ωI +Λ)−1/2qqT (ωI +Λ)−1/2

qT (ωI +Λ)−1q ≤ 1
µ

µ ≤

(
n

∑
i=0

q2
i

ω +λi

)−1

.

Let z(0) = ldet(Ĉ ◦Y + I)−G(Y )•Y +bT ū+dT w̄, and for ω > 0 define

z(ω) = z(0)+(s+1)ω−

(
n

∑
i=0

q2
i

ω−λi

)−1

.

We can perform a one-dimensional linesearch on z(ω) to find an approximate minimizer
ω∗; note that z(·) is convex since z(ω) (ignoring a constant) is the minimum in (18) as a
function of ω . Let δ 1

i = z(ω∗)− z(0). If z(0)+δ 1
i < v, where v is the objective value for a

feasible solution to MESP, then we have a proof that xi = 0 in any optimal solution of MESP.
The logic to impose the constraint xi = 0 is identical to the above with ei− e0 replacing

the vector ei throughout. Note that (ei− e0)
TY (ei− e0) = 1− xi, so the constraint Y • (ei−

e0)(ei−e0)
T = 1 is equivalent to xi = 0, and in this case z(0)+δ 0

i < v where δ 0
i = z(ω∗)−

z(0) provides a proof that xi = 1 in any optimal solution of MESP.
It is important to note that in the case where no inequality constraints are added (p = 0),

all of the information required to implement Methodology II is already available from the
solution of (3). The reason for this is simply that the solution Y of (3) must also solve (13). It
is obvious that with p = 0, (13) is a relaxation of (3), but since (13) is based on the gradient
of the objective at Y , if the objective value in (13) was less than G(Y ) •Y then it would
be possible to construct a solution in (3) whose objective value was less than that of Y . In
particular, when p = 0, the matrix T is available as a dual variable from the solution of
(3) via (6). When p = 0 we can then compute δ 1

i for each i using both methodologies and
take the lower (more negative) value, and similarly for each δ 0

i . In our experience neither
methodology dominates the other and it is worthwhile to execute both. In addition to their
use in fixing variables, the δ 1

i and δ 0
i values can be used as the basis for a strong branching

strategy within a B&B framework, as described in the next section.
For the instances with n = 63, we find that the variable-fixing logic is capable of fixing

some variables to 0/1 values when the gap between the BQP bound and the known value v
is less than about 0.50. For example, for the instances with s = 40 , 45 , 50 and 55, applying
the BQP bound to the complementary problem and using the value v obtained by a heuristic,
the number of variables that can be fixed to value 1 is 4, 21, 32 and 41, respectively (no
variables can be fixed to value 0).
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5 Branch and Bound implementation

We have implemented the BQP-based bounds in a complete B&B algorithm for solving
instances of MESP to optimality. Our implementation is Matlab-based, using SDPT3 [19]
to solve problems of the form (2). In this section we describe some important features of our
B&B implentation and give computational results on benchmark problems.

The B&B tree is initialized with a root node corresponding to the given MESP, and a
lower bound or best-known value (BKV) obtained from a set of greedy and exchange heuris-
tics [10] that are applied to both the original and complementary problems. We maintain a
queue of unfathomed nodes from the tree, which is processed using depth-first search. Each
node corresponds to a subproblem with some variables fixed to 0/1 values. When a node
is removed from the queue we form the reduced MESP problem obtained by eliminating
variables fixed to 0, and using (16) to fix variables to 1. The resulting problem is an instance
of MESP where s′ ≤ s indices must be chosen from n′ ≤ n candidate indices. If s′ = 1 or
s′ = n′− 1 then we enumerate the possible solutions. If a solution is found with objective
value better than the BKV then the BKV is updated and the set of corresponding indices
saved. In either case the node is discarded.

If 1 < s′ < n′− 1 we first check if the bound inherited from the node’s parent is less
than the BKV. If so (which is possible since the BKV may have been updated since the
node was placed on the queue) then the node is discarded. Otherwise we compute a bound
by solving a problem of the form (2). We use the same bound (original or complementary)
as was used for the node’s parent, using a scaling factor γ that is inherited from the node’s
parent. Only one problem of the form (2) is solved to compute the bound; we compute
an update to γ as described in Section 2 and pass this updated value to child nodes. If
the resulting bound is less than the BKV then we discard the node. Otherwise we apply
the variable-fixing logic described in Section 4 to fix additional variables to 0/1 values, if
possible. Following additional variable-fixing, we are left with the problem of choosing s′′

indices from n′′ candidate indices. If s′′ ≤ 1 or s′′ ≥ n′′−1 then we enumerate the possible
solutions, update the BKV if applicable, and discard the node.

If 1 < s′′ < n′′−1 then we will replace the node with two children by branching on one
index. To choose the branching index we use a strong branching strategy based on the δ 0

i
and δ 1

i values described in Section 4. Let δmin be the minimum of all of the δ 0
i and δ 1

i values
for the remaining variables, and let imin be the index for which this is minimum is attained.
Initially we branch on imin, putting the “easy” node on the queue first and the “hard” node
second. If δmin = δ 0

imin
then the easy node has ximin = 0 and the hard node has ximin = 1,

with the reverse if δmin = δ 1
imin

. Putting the hard node on second and using depth-first search
induces an initial “dive” in the B&B tree. This dive eventually produces a feasible solution
and typically leads to rapid update of the BKV when the initial BKV is not the optimal value.
After the initial dive is complete, resulting in a node being fathomed, we continue to use the
strong branching criterion if the value δmin is sufficiently negative, but switch the order and
place the hard node on the queue first and the easy node second. We use a simple criterion
based on the absolute value of δmin as well as the value of δmin relative to the current gap to
decide if δmin is sufficiently negative, and if not we simply branch on the variable i with the
minimum value of |x̄i− .5| in the solution of (2).

In addition to the computation of a bound based on the type of bound (original or com-
plementary) used by a node’s parent, we periodically compute the other bound (complemen-
tary or original, respectively) to check if the other bound is possibly better. This can occur
due to the fixing of variables, and as described in [4] is important to consider when using a
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Fig. 4 Cumulative B&B tree statistics for n = 63, s = 31 instance

bound like the BQP bound, or the masked spectral bound, which differs for the original and
complementary problems. On the other hand excessive computation of both bounds would
substantially increase the total computation time. We use a simple criterion based on the
number of fixed variables and depth in the tree to decide when to check the other bound.

We first consider the instances of MESP with n = 63 described in Section 2. These
problems were previously solved by a B&B algorithm using the NLP-based bound in [2,3].
Our B&B algorithm using the BQP-based bound solves any instance of these problems in
less than one hour on a 3.4 GHz PC. For example, the instance with s = 31 is solved in 2,438
seconds using 4,203 nodes in the B&B tree, with over 85% of the total time dedicated to the
SDPT3 solver. This total time is far superior to the result using the masked spectral bound in
[4], which required 65 hours on a 2.4 GHz PC, and is almost identical to the time required
in [3] after adjusting for the difference in CPU clock speed. As shown in Figure 1 the initial
gap for the BQP-based bound for these instances is largest at s = 11, but the instance with
s = 11 requires only 764 seconds and 1,481 nodes. In general instances of MESP are most
difficult to solve to optimality when s is approximately equal to n/2, which is consistent
with the inherent combinatorial complexity of the problem.

In Figure 4 we give statistics for the B&B tree from the solution of the instance with
n = 63, s = 31. For each k, Ndepth(k) is the cumulative number of nodes at depth less than
or equal to k, where a node is at depth k if it has been obtained as the result of branching
on k variables. Nfathom(k) is the cumulative number of nodes fathomed at depth less than
or equal to k; the overall fraction of nodes fathomed is almost exactly 2/3. Nfix(k) is the
number of nodes having no more than k fixed variables. Note that a node at depth k has
k variables fixed due to branching, so we would have Nfix(k)=Ndepth(k) if there were no
additional fixed variables. The figure shows the substantial effect of the variable-fixing logic
described in Section 4. For example, the median depth of the nodes in the B&B tree is 29,
with 2,113 of 4,203 nodes at depth less than or equal to 29. However there were only 775
nodes with 29 or fewer fixed variables, and the median number of fixed variables was 37.
In addition to possibly improving the bounds obtained, the larger number of fixed variables
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has a considerable effect in speeding up our bound computations based on (2) due to the
reduced number of problem variables.

In addition to the problems with n = 63 we also considered a set of MESP instances
with n = 124, introduced in [9]. In Figure 5 we give the root gap to the best value obtained
by a heuristic for these instances with s = 10,20, . . . ,120 for several different bounds. It is
shown in [9] that the NLP bounds [2,3] are very poor on these problems. The BQP bound
is better than any previously known bound for these instances for s≤ 50 and s≥ 110, but is
worse than some other bounds (in particular the masked spectral bound) for 60 ≤ s ≤ 100.
Comparing Figures 1 and 5 it is clear that the root gaps are much higher for the instances with
n = 124, which means that we can expect that these problems will be much more difficult to
solve to optimality. Since the root gaps are much larger than those for the instances with n =
63, one might also hope that the addition of inequalities as described in Section 3 might have
a larger effect. Unfortunately this is not the case; we find that adding additional inequalities
from the BQP has a relatively small effect on the bound, as shown for the problems with
n = 63 in Figure 3.

To our knowledge the only instance with n = 124 that is reported as solved to optimality
in the literature is the problem with s = 115, which was solved in under one hour of com-
putation using the masked spectral bound [4]. For our B&B algorithm based on the BQP
bound, we have found that it is practical to solve these instances to optimality when the root
gap is below approximately 5. In Table 1 we give solution statistics for the instances with
s = 15, 20, 25, 30 and 115. To our knowledge the problem with n = 124, s = 30 is currently
the most difficult instance of MESP that has been solved to optimality.

Table 1 B&B statistics for n = 124 instances

Heuristic Solution Root Time
s Value Value Gap Nodes (hours)

15 61.558 61.889 0.788 173 0.1
20 76.989 77.827 2.284 700 1.0
25 92.176 92.828 3.203 4,126 3.2
30 106.674 106.700 4.142 93,652 117.0

115 137.188 137.299 2.921 1,819 0.6
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6 Conclusion

We have considered a bound for the maximum-entropy sampling problem (MESP) that is
based on maximizing a log-det objective over a convex relaxation of the Boolean quadric
polytope (BQP). The BQP-based bound is computationally tractable using the SDPT3 solver,
and gives excellent results on many benchmark instances. A complete Matlab-based branch-
and-bound algorithm using the BQP bound solves some difficult benchmark instances to op-
timality for the first time. Approaches based on the BQP bound and the optimized masked
spectral bound together represent the current state of the art in algorithms for MESP.

Acknowledgements I am grateful to Jon Lee for several very valuable conversations on the topic of this
paper, and to Sam Burer for providing details of the computational results from [4].
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