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Summary. We introduce a new “masked spectral bound” for the maximum-entropy
sampling problem. This bound is a continuous generalization of the very effective
“spectral partition bound.” Optimization of the masked spectral bound requires the
minimization of a nonconvex, nondifferentiable objective over a semidefiniteness con-
straint. We describe a nonlinear affine scaling algorithm to approximately minimize
the bound. Implementation of the procedure obtains excellent bounds at modest
computational expense.

Key words: maximum-entropy sampling, experimental design, semidefinite pro-
gramming, spectral partition bound

Introduction

Let C be a symmetric positive definite matrix of order n. Let s be an integer sat-
isfying 0 < s < n. For subsets S and T of N := {1,2,...,n}, we let C[S,T] denote
the submatrix of C' having rows indexed by S and columns indexed by T'.

The mazimum-entropy sampling problem is to calculate

MESP : z(C, s,n) := max {ln det C[S,S] : SCN, |S|=s}.

This problem was introduced in [21], developed from an application standpoint in
[7, 23] where it was applied to the design of environmental monitoring networks, and
has been studied from the algorithmic perspective rather extensively (see [1, 2, 8, 11,
12, 15] and the surveys [13, 14]). In a typical application, C' is a sample covariance
matrix obtained from time-series observations of one variable at n locations, and it
is desired to choose s locations from which to conduct subsequent data collection.
The use of entropy as a selection criterion, together with the assumption that values
at the n locations are drawn from a multivariate normal distribution, then leads
naturally to MESP. (Note that In det C[S, S] is, up to constants, the entropy of the
Gaussian random variables having covariance matrix C[S, S].)

Exact algorithms to compute a maximum-entropy design use the “branch-and-
bound” framework. Besides lower-bounding heuristics used to find good candidate
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solutions, a key ingredient is the upper-bounding method. A fast method that can
provide a reasonably sharp upper bound on z(C,n,s) is critical to the success of
such an approach. Much of the aforementioned algorithmic work concentrates on
developing effective upper bounds. The present article continues in this direction.

The organization of the paper is as follows. In Section 1 we describe the masked
spectral bound, which is derived using Oppenheim’s inequality (see [18]). The new
bound is a generalization of the spectral partition bound of [8], which itself is a
generalization of both the eigenvalue bound of [11] and the diagonal bound of [§].
Optimization of the masked spectral bound requires the minimization of a noncon-
vex, nondifferentiable objective over a semidefiniteness constraint. In Section 2 we
consider the application of a nonlinear affine scaling algorithm to approximately op-
timize the masked spectral bound. In Section 3 we give computational results. We
find that the performance of the masked spectral bound is superior to several known
bounds, and the computational expense to obtain the bound is quite reasonable.
Finally, in Section 4 we describe some alternative bounds based on Oppenheim’s
inequality.

NOTATION: [ is an identity matrix; F is a matrix of all ones; e is a vector of all
ones; det is determinant; for a matrix X, diag(X) is the vector of diagonal entries
in X; for a vector z, Diag(z) is the diagonal matrix such that = diag(Diag(z));
for a matrix (or vector) X, we denote its transpose by X’; X = 0 denotes that
X is symmetric and positive semidefinite; o is Hadamard (i.e., element-wise) prod-
uct; A e B := trace(AB'); \i(X) is the I-th greatest eigenvalue of X. Other basics
concerning matrix algebra can be found in [9, 10].

1 The masked spectral bound

A mask is an X = 0 having diag(X) = e. We define the associated masked spectral
bound as

o(X) =) I\ (CoX)).
=1

Special cases include the diagonal bound - (1), the eigenvalue bound £ (E), and the
spectral partition bound Ec(X), where X is a block-diagonal matrix with diagonal
blocks being matrices of all 1’s. Obviously the spectral partition bound is a gener-
alization of the diagonal and eigenvalue bounds, and the masked spectral bound is
a further generalization.

Validity of the masked spectral bound (§c(X) > z(C,s,n)) is based on (i)
Oppenheim’s inequality (see [18])

det Ao B
H;ﬂ Bj;

where A > 0 and B > 0 (see [9, Theorem 7.8.6]), and (ii) the eigenvalue inequalities
Ai(A) > N(B), where A = 0, and B is a principal submatrix of A (see [9, Thorem
4.3.15)).

We would like to minimize £c(X) over all masks. While the set of masks is
indeed a convex set, the function {c(+) is not convex. So, we will have to be content
with heuristics that seek a good local minimum of £c ().

det A <
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By exploiting the identity
In det C[S,S] =1In det C +1n det C"'[N\ S, N\ 5],

any bound for the complementary problem of choosing a maximum entropy set of
n — s points with respect to the covariance matrix C~' translates to a bound for
the original problem (see [1, 2]).

There are other bounds that do not fit neatly into the present framework. The
“linear integer programming bound” introduced in [15] is a strengthening of the
spectral partition bound. Although quite effective, that bound is computationally
very intensive. The “nonlinear-programming bound” of [1, 2] is based on a concave,
continuous relaxation of MESP. That bound, while quite effective on some problems,
is somewhat inconsistent and requires parameter tuning that is not completely un-
derstood.

2 The minimization method

For X =0, let w(Co X) be an eigenvector, of Euclidean norm 1, associated with
A (C o X). Then, as long as As(C o X) > A\s+1(C o X), we have that the gradient of

¢c(v) at X is the matrix

Vxéo(X) =Co Y N(CoX)u(CoX)u(CoX) .

=1

This can be derived using standard results concerning symmetric functions of eigen-
values (see [22], for example). Note that we must define the w; properly when
M(CoX)=MNu(CoX)forany I =1,...,5 — 1; in such situations, we just take
care that the associated {u;} form an orthonormal basis for each of the eigenspaces
corresponding to distinct eigenvalues.

When A (CoX) = Aey1(CoX), £c() is not differentiable at X . Thus the problem
of finding an optimal mask corresponds to minimizing a nondifferentiable, nonconvex
function over a semidefiniteness constraint. There is at present very little literature
on problems of this type. A number of recent papers have considered the extension
of methods for general nonlinear programming (NLP) to include semidefiniteness
(or “Linear Matrix Inequality” (LMI)) constraints. Methodologies based on primal-
dual algorithms, augmented Lagrangians, and sequential quadratic programming
are described in [3], [4] and [5], respectively. The difficulty with such methods in our
context is that they are likely to fail numerically, due to the lack of differentiability
of the objective.

An alternative approach to our problem would be to use a general method for
the unconstrained minimization of a nondifferentiable function, for example the
well-known Bundle-Trust (BT) algorithm (see [20]). To represent the problem of
minimizing &c(+) in the form required by such an algorithm, consider the function
svec(+) : RV — (=172 that takes the superdiagonal components of a matrix X
and “stacks” them into a vector x:

xr = SVGC(X) = (X12,X13, . ,)(17”)('23,)(247 .. .,in, .. .anl,n)l.
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Similarly let X = Smat(z) be the symmetric matrix, with unit diagonal, such that
svec(Smat(z)) = . The problem of obtaining an optimal mask can then be written
in the form

MOP : min {fc (Smat(x)) — pmin{)\n(Smat(X)),O}},

where p is a sufficiently large penalty parameter.

The original objective {c(-) could be exponentiated in MOP to extend the do-
main of definition to include indefinite matrices. However, for p sufficiently large,
the use of £c(+) should present no difficulties unless s is close to n, in which case the
complementary problem could be considered.

From the standpoint of nondifferentiable optimization (NDO), the main difficulty
with MOP is the number of variables, m = n(n — 1)/2. For example, n = 60 gives
m = 1770, and n = 120 gives m = 7140. In addition, an algorithm for general NDO,
such as the BT method, knows nothing of the special structure that underlies MOP
and instead treats the objective function to be minimized as a “black box.”

One recently developed method for NDO (see [19]) was designed more specifically
for minimizing nondifferentiable functions of the eigenvalues of a matrix, such as
&c(+). However, in the control applications for which this algorithm was designed
the number of variables is typically small, although the matrices that are functions
of the controls can be much larger. For a problem with m variables, the algorithm
of [19] samples the gradient at m points in a neighborhood of the current iterate,
and then obtains a search direction via minimization of a convex quadratic function
of m nonnegative variables. For the dimensions m arising in our application, this
work per iteration could be prohibitively large.

Our approach to attempt to minimize {c(-) is based on a heuristic adaptation
of the well-known affine scaling algorithm for linear programming (LP). For a given
X > 0 with diag(X) = e, let G = Vx£&c(X), and consider the linear semidefinite
programming problem

SDP : min G e X
s.t. diag(X) =e
X > 0.

The affine scaling direction for SDP (see [6]) is based on minimizing the linear ob-
jective over the “Dikin ellipsoid” induced by the barrier —In det X, intersected with
the linear equality constraints. For the constraints diag(X) = e, it is straightforward
to show (see for example [17]) that the affine scaling direction D at X is given by

D = X’(G - Diag(u)))?,

where u = (X o X)~! diag(XGX). Given the direction D, we consider a step of the
form
X =X —af"D,

where 0 < 8 < 1, and the initial step parameter « corresponds to a fixed fraction
of either a “short step” or a “long step.” The short step is based on the limit of the
Dikin ellipsoid that is used to define D, while the long step is based on the limit of
the true feasible region X » 0; see [17, Section 2] for details. We attempt a step with
k =0, and we accept the resulting X if £o(X) < £c(X). If not, we “backtrack” by
incrementing k a limited number of times in an attempt to decrease {c(-). For the
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highest allowed k, we accept X even if £0(X) > £c(X). In our implementation we
use f=1/3 and k < 2.

The above strategy for minimizing {c(+) is clearly quite heuristic. For example,
due to the nondifferentiability of £c(+), we cannot insure descent on every iteration.
However, the use of non-improving steps in algorithms for NDO (for example the
well-known subgradient method) is quite common. Even in the case when G is
constant, the affine scaling method for SDP (either short-step or long-step) may fail
to converge to a solution (see [17]). However, the affine scaling method for LP has
been very successful in practice, and it is usually applied with very long steps even
though it is known that theoretically the algorithm with such step-sizes could fail
to converge (see [16]).

3 Computational results

We have implemented the affine scaling heuristic for approximately minimizing £ (-)
in MATLAB. In Figure 1, we illustrate the performance of the algorithm on a prob-
lem with n = 63, s = 31. The data for this example, which has previously been
used to evaluate other bounding schemes for z(C, s,n), comes from an environmen-
tal monitoring application (see [7]). The algorithm is applied to the complementary
problem, and is initialized at a matrix X; = .975F + .025] (recall that X = E cor-
responds to the eigenvalue bound, and X = I corresponds to the diagonal bound).
The algorithm is run for 1000 iterations, using an initial step-length « on each iter-
ation corresponding to 50% of a short step. In the figure, we give the gap between
the masked spectral bound and the best solution found by a heuristic procedure
(the heuristic value is approximately 0.0075 below the optimal value, previously
computed using the algorithm of [2]). The gap for the eigenvalue bound (X, = E)
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Fig. 1. Decrease in masked spectral bound for problem with n = 63, s = 31.
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is approximately 5.71454. In the figure we also give the cumulative number of non-
improving steps. The first 120 iterations are all improving, and decrease the gap to
approximately 2.75362, a reduction of almost 52%. The second non-improving step
is on iteration 152, after which non-improving steps become more and more frequent.
The algorithm nevertheless continues to make gradual progress, eventually decreas-
ing the gap to 2.54639, a reduction of about 55.4% compared to Xo = E. This gap
is slightly more than the best gap for the problem obtained in [8]. A substantially
smaller gap was computed in [15]. However, the better gaps obtained in [8, 15] are
obtained using significantly more computational effort. On a 400 MHz Windows
PC the first 120 iterations of the affine scaling method require about 14 seconds,
and all 1000 iterations require a total of about 240 seconds. It is to be expected
that non-improving iterations are more time-consuming due to backtracking of the
steplength. It should also be noted that our implementation is not at all optimized
for efficiency, since our primary goal is to evaluate the potential strength of the
masked spectral bounds rather than how quickly the bounds can be obtained.

The performance illustrated in Figure 1 appears to be typical for our method.
After an initial number of improving steps the algorithm performs non-improving
steps more and more frequently, but still obtains gradual decrease in the bound. In
our code the iteration sequence is terminated if 50 consecutive steps fail to produce
an improvement in the best bound, but using a maximum of 1000 steps this early
termination criterion is rarely satisfied.

To evaluate our methodology we have attempted to minimize the masked spec-
tral bound for a number of different test problems. In Figure 2 we give results
based on the environmental monitoring data set with n = 63 from [7]. For each
s = 3,4,...,60 we give the gaps between several different bounds and the highest

> —Eig

2 —— Diag

& 4 —— OneBig

§ N - - - MS_Eig
------ MS_OB

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

S

Fig. 2. Comparison of bounds on problems with n = 63.
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entropy found using a heuristic procedure. In the figure ‘Eig’ and ‘Diag’ denote the
eigenvalue and diagonal bounds, and ‘OneBig’ denotes the bound obtained using
an X having a single block of ones corresponding to the best solution found by
the primal heuristic, and all remaining off-diagonal components zero. ‘MS_ Eig’ and
‘MS__ OB’ refer to the masked spectral bounds computed using an initial Xo equal
to the X that gives the Eig and OneBig bounds, respectively. In both cases the
iterative sequence for minimizing £c(-) was initiated at X1 = 95X, + .05( + E),
and the algorithm was run for 1000 iterations. For all of the bounds except Eig we
computed bounds based on the original and complementary problems, and report
the better of the two. (The original bound was better for s less than 20, 26, 16 and
25 for Diag, OneBig, MS_ Eig and MS_ OB, respectively.) It is clear from the figure
that the masked spectral bound performs very well on this data compared to the
previously described Eig, Diag and OneBig bounds. The substantial reduction in
the gap comparing MS_Eig to Eig and the excellent performance of MS_OB are
both noteworthy.

We also considered problems based on another data set with n = 124. In [15]
this data was used to evaluate a number of bounds for z(C,s,n), including the
Eig and Diag bounds and several variants of the NLP-based bounds from [1, 2].
In Figure 3 we give the gaps between different bounds and a heuristic solution, for
s = 10,20, ...,120. For all of the bounds considered in [15], the original problem
gave a better bound than the complementary problem for s < 70. Consequently each
bound considered here was based on the original problem for s < 70, and the com-
plementary problem for s > 80. The MS_Eig and MS_OB bounds were computed
using 500 iterations of the affine scaling procedure, requiring up to 800 seconds per
instance on a 400 MHz Windows PC. Among all of the bounds considered in [15],

70

60 //\\

50
) —Eig
S 40 —— Diag
& —— OneBig
%' 30 | - - - MS_Eig
o | e~ \\ | MS_OB

20 1

10 1

O T T T T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100 110 120 130
s

Fig. 3. Comparison of bounds on problems with n = 124.
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Diag gives the best bound for s < 40, and Eig gives the best bound for 50 < s < 110.
For s = 120 a partition bound based on blocks of size two is slightly better than
Diag. As shown in [15, Table 1.2] the performance of the different NLP bounds is
quite poor on these problems. Considering the bound values from [15] together with
Figure 3, we conclude that the MS__ OB bound is superior to all previously computed
bounds on these problems for 10 < s < 120. Unfortunately the gaps for intermediate
values of s (say 40 < s < 100) are still quite high — probably too high to permit the
computation of an optimal solution using branch-and-bound in a reasonable amount
of time. It is important to note, however, that the optimal values for these problems
are unknown, and a substantial fraction of the gap could be due to suboptimality
of the lower bound provided by the heuristics.

4 Alternative use of Oppenheim’s inequality

Not bothering with the logarithms in this section, the bound that we seek is

P, : vi= min{H)\l(CoX) : X =0, diag(X):e}.

=1

However, by arguing a bit differently we can obtain an alternative bound

P.:  ui= min{H)\l(CoX)/Hdiagm(X) : Xzo},
=1 =1

where diag;;(X) denotes the [-th least component of diag(X). Another variation is
the bound

Pw : w = min{HAl(CoX) . ¢ t 0, Xij = Xij/ Xiinj} .

=1

All of these are upper bounds on max{det C[S,S] : |S| = s}. Even though we
do not know algorithms to calculate these bounds exactly, it is potentially useful to
know the relationship between them.

Theorem 1. u <v=w .

Proof. Certainly we have u < v since every X that is feasible for P, is feasible for
P, and has the same objective value. Also, we have w < v since every X that is
feasible for P, has X = X in P,.

Next, we observe that for every X that is feasible for P,,, X is just the Hadamard
product of X with Y := ¢y, where

Yi ‘= 1/\/Xii .

It is immediate that diag(X) = e and that Y > 0. Furthermore, by the Schur
Product Theorem (see [10]), we have that X > 0. Therefore X is feasible for P,.
Finally, the objective value of X in P, is the same as that of X in P,. Therefore,
we have established that v <w. 0O
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Based on Theorem 1, it might be profitable to attempt to solve P, instead of
P, to obtain a tighter bound for MESP. However, our limited experience indicates
that the objective of P, (or its logarithm) is substantially more difficult to minimize
than that of P,, due to the presence of the additional nondifferentiable term in the
denominator. A minimization framework that deals more carefully with nondiffer-
entiability of the objective might overcome this added difficulty and obtain better
bounds. On the other hand we believe that it is likely, but cannot prove, that in the
solution of P, many of the components of diag(X) are equal.

5 Conclusion

The spectral partition bound of [8] and the related integer linear programming
bound of [15] yield significant improvements over spectral bounds based on pre-
defined combinatorial masks (for example the eigenvalue bound &c(E) or the di-
agonal bound &¢(I)). However, these bounds are potentially too computationally
intensive to implement within branch-and-bound due to the effort required to per-
form the required combinatorial local search. In this paper we have shown, using the
new masked spectral bound, that significant improvements over a pre-defined mask
can also be achieved through methods of nonlinear programming. Moreover, the
required optimization in this case does not suffer from the combinatorial explosion
associated with local search. We therefore believe that the masked spectral bound is
an excellent candidate to enhance the performance of branch-and-bound algorithms
for MESP, for example the algorithm based on eigenvalue bounds described in [11].
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