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Abstract. We consider semidefinite optimization problems that include constraints of the form4
G(x) � 0 and H(x) � 0, where the components of the symmetric matrices G(·) and H(·) are5
affine functions of x ∈ Rn. In such a case we obtain a new constraint K(x,X) � 0, where the6
components of K(·, ·) are affine functions of x and X, and X is an n× n matrix that is a relaxation7
of xxT . The constraint K(x,X) � 0 is based on the fact that G(x)⊗H(x) � 0, where ⊗ denotes the8
Kronecker product. This construction of a constraint based on the Kronecker product generalizes the9
construction of an RLT constraint from two linear inequality constraints, and also the construction10
of an SOC-RLT constraint from one linear inequality constraint and a second-order cone constraint.11
We show how the Kronecker product constraint obtained from two second-order cone constraints12
can be efficiently used to computationally strengthen the semidefinite programming relaxation of the13
two-trust-region subproblem.14
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1. Introduction. Let A and B be m × n and p × q matrices. The Kronecker18

product A⊗B is the mp× nq matrix19

A⊗B =

a11B · · · a1mB
...

...
am1B · · · amnB

 .20

Important properties of Kronecker products for our purposes are collected in the21

following proposition; for details see for example [10, Chapter 4]. We use A � 0 to22

denote that a matrix A is symmetric and positive semidefinite (PSD). For matrices23

A and B of the same dimensions we use A • B to denote the matrix inner product24

A •B = tr(ABT ).25

Proposition 1. If A and CT have the same number of columns, and B and DT26

have the same number of columns, then (A ⊗ B)(C ⊗ D) = AC ⊗ BD. Moreover27

(A⊗B)T = AT ⊗BT , and if A � 0 and B � 0, then A⊗B � 0.28

We are interested in the situation where a semidefinite optimization problem in29

the variables x ∈ Rn and X ∈ Rn×n also includes constraints of the form G(x) � 030

and H(x) � 0, where the components of G(·) and H(·) are affine functions of x. The31

matrix X is a relaxation of the rank-one matrix xxT , and is typically constrained via32

the semidefinite restriction X � xxT . It is not assumed that the dimensions of the33

matrices G(x) and H(x) are identical. Since G(x)⊗H(x) � 0 is also a valid constraint34

by Proposition 1, we can replace every term of the form xixj in G(x) ⊗ H(x) with35

Xij to obtain a valid constraint K(x,X) � 0, where the entries of K(·, ·) are affine36

functions of x and X. We refer to a constraint generated in this fashion as a Kronecker37

product constraint.38
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Example 1. Let G(x) = b− aTx, H(x) = d− cTx. Then39

G(x)⊗H(x) = (aTx)(cTx)− b(cTx)− d(aTx) + bd40

K(x,X) = acT •X − (bc+ da)Tx+ bd.41

In this case K(x,X) ≥ 0 is exacty the constraint obtained using the well-known42

Reformulation-Linearization Technique (RLT) [15] applied to the two linear inequal-43

ities aTx ≤ b, cTx ≤ d. In this case the constraint K(x,X) ≥ 0 is commonly refered44

to as an ordinary RLT constraint.45

Example 2. Let G(x) = b− aTx, and let H(x) be the matrix for the PSD represen-46

tation of the second-order cone (SOC) constraint ‖A(x− h)‖ ≤ 1;47

H(x) =

(
I A(x− h)

(x− h)TAT 1

)
� 0.48

In this case49

G(x)⊗H(x) =

(
(b− aTx)I (b− aTx)A(x− h)

(b− aTx)(x− h)TAT b− aTx

)
50

K(x,X) =

(
(b− aTx)I v(x,X)
v(x,X)T b− aTx

)
,51

where v(x,X) = (aTx − b)Ah + bAx − AXa. Then K(x,X) � 0 is the PSD repre-52

sentation of the constraint formed by replacing xxT with X in the valid constraint53

‖(b− aTx)A(x− h)‖ ≤ b− aTx. Constraints of this type were introduced in [16], and54

were subsequently termed “SOC-RLT” constraints in [7].55

Example 3. Consider two strictly convex quadratic constraints expressed in SOC56

form as ‖x‖ ≤ 1 and ‖A(x− h)‖ ≤ 1, where A is an n× n nonsingular matrix. These57

constraints can be alternatively expressed in PSD form as G(x) � 0, H(x) � 0, where58

G(x) =

(
I x
xT 1

)
, H(x) =

(
I A(x− h)

(x− h)TAT 1

)
.59

Since G(x) � 0 and H(x) � 0, it follows that the Kronecker product G(x)⊗H(x) � 0,60

where61

G(x)⊗H(x) =


H(x) x1H(x)

. . .
...

H(x) xnH(x)
x1H(x) · · · xnH(x) H(x)

 .62

To generate a valid constraint on (x,X) we replace any products xixj with Xij in63

G(x)⊗H(x). Such products occur in terms of the form xjA(x− h) = Axjx− xjAh,64

where xjx→ Xj , the jth column of X. Defining65

Hj(x,X) =

(
xjI A(Xj − xjh)

(Xj − xjh)TAT xj

)
,66

we can write a valid PSD constraint K(x,X) � 0, where67

(1) K(x,X) =


H(x) H1(x,X)

. . .
...

H(x) Hn(x,X)
H1(x,X) · · · Hn(x,X) H(x)

 .68
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In this case we refer to the Kronecker product constraint K(x,X) � 0 as a “KSOC”69

constraint. We will consider constraints of this form in more detail in the next section.70

2. KSOC constraints. In this section we further study the Kronecker product71

constraint K(x,X) � 0, with K(·, ·) as in (1), that is generated from two SOC72

constraints ‖x‖ ≤ 1, ‖A(x − h)‖ ≤ 1. We assume throughout that A is nonsingular.73

To begin, we note that the problem of generating additional valid constraints on74

(x,X) that are implied by these two SOC constraints was previously considered in75

[7]. The approach taken in [7] was based on using a linear constraint aTx ≤ 1, where76

‖a‖ = 1, together with the SOC constraint ‖A(x− h)‖ ≤ 1, to generate an SOC-RLT77

constraint as in Example 2 of the previous section. Note that the constraint aTx ≤ 178

is a supporting hyperplane for the ball {x | ‖x‖ ≤ 1} at x = a. It is shown in [7] that79

using all such SOC-RLT constraints, corresponding to different choices of a with ‖a‖ =80

1, is equivalent to the use of all possible ordinary RLT constraints generated using81

supporting hyperplanes for both {x | ‖x‖ ≤ 1} and {x | ‖A(x − h)‖ ≤ 1}. However,82

the separation problem of finding an a with ‖a‖ = 1 so that the resulting SOC-RLT83

constaint is currently violated can be efficiently solved as a trust-region subproblem,84

while the problem of finding two supporting hyperplanes so that the resulting ordinary85

RLT constraint is violated is bilinear.86

We will next show that the KSOC constraint K(x,X) � 0 implies all possible87

SOC-RLT constraints that arise from using an a with ‖a‖ = 1 together with the SOC88

constraint ‖A(x − h)‖ ≤ 1. As described in Example 2 of the previous section, such89

an SOC-RLT constraint has the form ‖(aTx− 1)Ah+Ax−AXa‖ ≤ 1− aTx.90

Lemma 2. Suppose that ‖a‖ = 1 and K(x,X) � 0, with K(·, ·) as in (1). Then91

‖(aTx− 1)Ah+Ax−AXa‖ ≤ 1− aTx.92

Proof. Since K(x,X) � 0 it must also be that93

[(−aT , 1)⊗ I] K(x,X)

[(
−a
1

)
⊗ I
]
� 0.94

However95

[(−aT , 1)⊗ I] K(x,X)

[(
−a
1

)
⊗ I
]

96

= (−a1I, . . . ,−anI, I)


H(x) H1(x,X)

. . .
...

H(x) Hn(x,X)
H1(x,X) · · · Hn(x,X) H(x)



−a1I

...
−anI
I

97

= (−a1I, . . . ,−anI, I)


−a1H(x) +H1(x,X)

...
−anH(x) +Hn(x,X)

H(x)−
∑n

j=1 ajHj(x,X)

98

= (1 + aTa)H(x)− 2

n∑
j=1

ajHj(x,X)99

= 2[H(x)−
n∑

j=1

ajHj(x,X)],100
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implying that H(x)−
∑n

j=1 ajHj(x,X) � 0. But101

H(x)−
n∑

j=1

ajHj(x,X)102

=

(
I A(x− h)

(x− h)TAT 1

)
−

n∑
j=1

aj

(
xjI A(Xj − xjh)

(Xj − xjh)TAT xj

)
103

=

(
(1− aTx)I A(x− h)−

∑n
j=1 aj(AXj − xjAh)

(x− h)TAT −
∑n

j=1 aj(AXj − xjAh)T (1− aTx)

)
104

=

(
(1− aTx)I (aTx− 1)Ah+Ax−AXa

(aTx− 1)hTAT + xTAT − aTXTAT (1− aTx)

)
,105

so H(x) −
∑n

j=1 ajHj(x,X) � 0 is exactly the PSD representation of the SOC-RLT106

constraint ‖(aTx− 1)Ah+Ax−AXa‖ ≤ 1− aTx.107

Lemma 2 shows that the use of the KSOC constraint K(x,X) � 0 implies all108

possible SOC-RLT constraints used in [7], but it does not show that the constraint109

K(x,X) � 0 is actually stronger. In the computational results of the next section110

we will demonstrate that in at least some cases the constraint K(x,X) � 0 is in fact111

stronger than all possible SOC-RLT constraints used in [7].112

From a computational standpoint, one difficulty with the constraint K(x,X) � 0113

is that the size of the matrix K(·, ·) is (n+1)2× (n+1)2, and therefore even a modest114

underlying dimension n will result in a very large PSD constraint. Fortunately it115

is possible to use the block structure of K(·, ·) from (1) to express K(x,X) � 0 as116

semidefiniteness of an (n+1)×(n+1) matrix. The fact that this much smaller matrix117

can be efficiently computed facilitates the use of a cut-generation scheme for enforcing118

K(x,X) � 0.119

Lemma 3. Suppose that K(x,X) � 0, with K(·, ·) as in (1). Then ‖x‖ ≤ 1 and120

‖A(x− h)‖ ≤ 1. In addition, if either ‖x‖ = 1 or ‖A(x− h)‖ = 1 then X = xxT .121

Proof. That K(x,X) � 0 implies H(x) � 0 is obvious since H(x) occurs as a prin-122

cipal submatrix of K(x,X). However G(x) is also a principal submatrix of K(x,X),123

corresponding to the rows and colums indexed by the (n + 1, n + 1) components of124

each diagonal block of K(x,X), so K(x,X) � 0 also implies that G(x) � 0. To prove125

the remainder of the lemma, consider a nonsingular symmetric transformation of the126

form127

K ′(x,X) =


V (x)T

. . .

V (x)T

−x1I · · · −xnI I

K(x,X)


V (x) −x1I

. . .

V (x) −xnI
I

 ,128

where129

V (x) =

(
I −A(x− h)

1

)
.130

Substituting in the definition of K(x,X) from (1), we obtain131

K ′(x,X) =


T (x) W1(x,X)

. . .
...

T (x) Wn(x,X)
W1(x,X)T · · · Wn(x,X)T Z(x,X)

 ,132
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where133

T (x) = V (x)TH(x)V (x) =

(
I

t(x)

)
, t(x) = 1− ‖A(x− h)‖2,134

Wj(x,X) = V (x)T [Hj(x,X)− xjH(x)] =

(
0 A(Xj − xjx)

(Xj − xjx)TAT (h− x)TATA(Xj − xjx)

)
,135

Z(x,X) = (1 + ‖x‖2)H(x)− 2

n∑
j=1

xjHj(x,X)136

= (1 + ‖x‖2)

(
I A(x− h)

(x− h)TAT 1

)
137

−2

n∑
j=1

xj

(
xjI A(Xj − xjh)

(Xj − xjh)TAT xj

)
.138

Collecting terms, we obtain139

(2) Z(x,X) =

(
s(x)I 2A(x−Xx)− s(x)A(x+ h)

2(x−Xx)TAT − s(x)(x+ h)TAT s(x)

)
,140

where s(x) = 1−‖x‖2. Since K ′(x,X) � 0, t(x) = 0 implies that each row and column141

corresponding to the diagonal entries of K ′(x,X) equal to t(x) must be zero, and142

therefore A(Xj − xjx) = 0 for each j. But then A(X − xxT ) = 0, implying X = xxT143

since A is nonsingular. Similarly if s(x) = 0 then Z(x,X) = 0 and Wj(x,X) = 0 for144

each j, again implying that A(X − xxT ) = 0 and therefore X = xxT .145

The first result in Lemma 3 is reminiscent of the well-known fact [15] that when146

generating ordinary RLT constraints from linear inequalities, the set of all possible147

RLT constraints implies the original inequality constraints. Note that if X = xxT ,148

then the vector 2A(x −Xx) − s(x)A(x + h) in the upper right and lower left blocks149

of Z(x,X) is equal to s(x)A(x − h). In this case Wj(x,X) = 0 for each j, and150

Z(x,X) = s(x)H(x).151

We next consider further elimination of the off-diagonal blocks in K ′(x,X) when152

X 6= xxT . From Lemma 3 we know that if K(x,X) � 0 then we would certainly153

have s(x) > 0 and t(x) > 0. However we are ultimately interested in generating a cut154

when in fact K(x,X) 6� 0. In the context of interest we will enforce the constraint155

X � xxT , and also the constraints tr(X) ≤ 1 and ATA•X−2hTATAx ≤ 1−hTATAh156

obtained from the original SOC constraints ‖x‖ ≤ 1 and ‖A(x − h)‖ ≤ 1. We omit157

the easy proof of the following result.158

Lemma 4. Assume that X � xxT , tr(X) ≤ 1 and ATA • X − 2hTATAx ≤159

1− hTATAh. Then s(x) = 1− ‖x‖2 ≥ 0 and t(x) = 1− ‖A(x− h)‖2 ≥ 0. Moreover160

if X 6= xxT then s(x) > 0 and t(x) > 0.161

Assuming that t(x) > 0, let W j(x,X) = T (x)−1Wj(x,X), and define162

K ′′(x,X) = U(x,X)TK ′(x,X)U(x,X) =


T (x)

. . .

T (x)
Z ′(x,X)

 ,163
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where164

U(x,X) =


I −W 1(x,X)

. . .

I −Wn(x,X)
I

165

and166

(3) Z ′(x,X) = Z(x,X)−
n∑

j=1

Wj(x,X)TT (x)−1Wj(x,X).167

Using the definition of Wj(x,X), and letting X̂ = X − xxT , it is straightforward to168

compute that Wj(x,X)TT (x)−1Wj(x,X) is equal to169  1
t(x)AX̂jX̂

T
j A

T 1
t(x)AX̂jX̂

T
j A

TA(h− x)

1
t(x) (h− x)TATAX̂jX̂

T
j A

T X̂T
j A

TAX̂j + 1
t(x)

(
(h− x)TATAX̂j

)2
 ,170

and therefore
∑n

j=1Wj(x,X)TT (x)−1Wj(x,X) is equal to171

(4)
1

t(x)

(
AX̂2AT AX̂2ATA(h− x)

(h− x)TATAX̂2AT t(x) tr(X̂ATAX̂) + ‖X̂ATA(h− x)‖2

)
.172

Substituting (4) and (2) into (3) we obtain a complete expression for Z ′(x,X).173

With t(x) > 0, we have by construction K(x,X) � 0 ⇐⇒ K ′′(x,X) � 0 ⇐⇒174

Z ′(x,X) � 0. If the latter does not hold for values (x,X) = (x̄, X), there is a vector175

a ∈ Rn+1 with aTZ ′(x̄, X)a < 0. It then follows that bTK(x̄, X)b < 0, where176

b =


V (x̄) −x̄1I

. . .

V (x̄) −x̄nI
I



I −W 1(x̄, X)

. . .

I −Wn(x̄, X)
I




0
...
0
a

177

=


−V (x̄)W 1(x̄, X)a− x̄1a

...
−V (x̄)Wn(x̄, x̄)a− x̄na

a

 =


B1

...
Bn

a

 .178

Then bTK(x,X)b ≥ 0 is a valid, linear constraint on (x,X) that is violated at (x̄, X).179

Using the definition of K(x,X) from (1), we have180

(5) bTK(x,X)b = aTH(x)a+

n∑
i=1

BT
i H(x)Bi + 2

n∑
i=1

aTHi(x,X)Bi.181

Letting182

a =

(
ā
α

)
, Bi =

(
Bi

βi

)
, i = 1, . . . , n,183

we have184

aTH(x)a = ‖ā‖2 + 2αāTA(x− h) + α2
185

BT
i H(x)Bi = ‖Bi‖2 + 2βiB

T

i A(x− h) + β2
i186

aTHi(x,X)Bi = āTBixi + βiā
TA(Xi − xih) + αB

T

i A(Xi − xih) + αβixi.187
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Substituting these expressions into (5) and collecting terms, we obtain a valid linear188

inequality (cut) of the form C • X + cTx + δ ≥ 0, where C • X + cT x̄ + δ < 0. We189

refer to a linear constraint obtained in this fashion as a “KSOC cut.”190

3. Computational results. In this section we consider the application of Kro-191

necker product constraints to instances of the two-trust-region subproblem (TTRS).192

The TTRS, also referred to as the Celis-Dennis-Tapia (CDT) problem [8], arises as193

a direction-finding subproblem in certain trust-region based methods for nonlinear194

optimization [9]. The TTRS has the form195

TTRS : minxTQx+ cTx196

s.t. ‖x‖ ≤ 1, ‖A(x− h)‖ ≤ 1197

where Q is an n × n symmetric matrix that is not assumed to be PSD. TTRS is a198

heavily studied problem. Optimality conditions for TTRS are considered in [5], [6],199

[11] and [13]. In some cases these conditions can provide a constructive proof that200

a locally optimal solution for TTRS is in fact the global optimum. A convergent201

trajectory-following method for TTRS is described in [18]. This method is not prov-202

ably polynomial-time, but a polynomial-time algorithm for TTRS based on methods203

for polynomial equations [2] is described in [4].204

The basic SDP (Shor) relaxation for TTRS is205

TTRSSDP : minQ •X + cTx206

s.t. ATA •X − 2hTATAx ≤ 1− hTATAh207

tr(X) ≤ 1, X � xxT .208

The PSD constraint X � xxT can be enforced by requiring that Y (x,X) � 0, where209

Y (x,X) =

(
1 xT

x X

)
.210

It is well known that the Shor relaxation TTRSSDP can have a nonzero optimality gap,211

unlike the simpler trust-region subproblem TRS (TTRS without the second constraint212

‖A(x − h)‖ ≤ 1), for which the Shor relaxation is tight [14]. Note that if (x,X) is213

feasible in TTRSSDP then x is feasible in TTRS, so an optimal solution (x∗, X∗) of214

TTRSSDP provides both a feasible objective value v(x∗) = x∗TQx∗+cTx∗ as well as a215

lower bound z(x∗, X∗) = Q•X∗+cTx∗. There are a variety of results (see for example216

[1] and [3]) that give conditions under which the Shor relaxation for TTRS is in fact217

tight, i.e. v(x∗) = z(x∗, X∗); one example [18, Section 2.2] is the “homogenous” case218

where c = h = 0. There are also cases where optimality conditions for TTRS can219

establish global optimality for problems where the Shor relaxation is not tight; see for220

example [5, 6].221

For the general case of TTRS, in which the Shor relaxation may not be tight,222

the approach taken in [7] is to start with TTRSSDP, and then add violated SOC-RLT223

constraints based on the second-order cone constraints of the problem as in Example 2224

of Section 1. After each constraint addition the problem is re-solved and an attempt is225

made to generate another violated SOC-RLT constraint. This process continues until226

either no violated constraint can be found, or 25 SOC-RLT constraints are added. At227

termination, an instance is considered to be solved if the relative gap satisfies228

(6) γ(x∗, X∗) =
v(x∗)− z(x∗, X∗)

|v(x∗)|
< 10−4,229

7
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Table 1
Comparison of results using KSOC cuts versus Yang and Burer (2016)

Number of instances solved by:
n Instances KSOC only YB only KSOC and YB Neither
5 38 8 8 12 10

10 70 34 7 14 15
20 104 35 14 24 31

212 77 29 50 56

where (x∗, X∗) is the optimal solution of TTRSSDP with the added SOC-RLT con-230

straints. This approach is applied to instances of TTRS that are generated based on231

a theorem of Mart́ınez [12] that are likely to have a gap for TTRSSDP (that is, have232

γ(x∗, X∗) > 0 for the solution (x∗, X∗) of TTRSSDP). Using the approach of gener-233

ating SOC-RLT cuts and a test set consisting of 1000 problems each of dimension 5,234

10 and 20, the numbers of unsolved instances are then 41, 70 and 104, respectively.235

The results of [7] are improved on by [17]. The methodology of [17] is based on236

a detailed study of TTRS for n = 2. This approach results in an exact cutting-plane237

algorithm for n = 2 that can also be extended heuristically to higher dimensions1.238

When applied to test problems from [7], the algorithm of [17] also solves some of the239

instances that are unsolved using SOC-RLT cuts. Due to differences in the solver and240

parameter settings, the number of instances that are unsolved using SOC-RLT cuts241

for dimensions 5, 10 and 20 are taken to be 38, 71 and 106, respectively in [17].242

The approach we consider here is to again start with the Shor relaxation TTRSSDP243

but to add cuts based on the Kronecker product constraint K(x,X) � 0 as described244

in the previous section. After each cut addition the problem is re-solved and an245

attempt is made to generate a new violated constraint. We continue until either246

K(x∗, X∗) � 0, in which case no constraint can be generated, or 25 KSOC cuts247

have been added. We apply this procedure to the TTRS problems from [7] that248

were reported as not solved using SOC-RLT cuts in both [7] and [17]; these are the249

38 problems with n = 5 reported as unsolved in [17] and the 70 (respectively 104)250

problems with n = 10 (respectively n = 20) reported as unsolved in [7]. Note that by251

Lemma 3 the condition K(x,X) � 0 implies all of the SOC-RLT cuts that could be252

added, so the problems that were successfully solved using SOC-RLT cuts would also253

be solved using the approach based on adding the KSOC constraint K(x,X) � 0. We254

verified that all of these problems are also solved by the procedure that adds up to255

25 KSOC cuts.256

In Table 1 we give a comparison of the results from [17] versus results using cuts257

based on the KSOC constraint on the instances from [7] that were not previously258

solved using SOC-RLT cuts. As shown in Table 1, overall results based on the KSOC259

constraint are better than those from [17], but neither method dominates the other. In260

all cases a problem is considered to be solved if the relative gap criterion (6) is satisfied261

at termination. Our computations were performed on a 64-bit PC with an Intel i7-262

6700 CPU running at 3.40 GHz with 16G of RAM, using the Matlab-based SeDuMi263

solver. Solution times for the problem sizes considered here were quite modest; for264

1The addition of K(x,X) � 0 to TTRSSDP is not sufficient to give an exact representation of
TTRS for n = 2. This can be demonstrated by numerically solving the example given in [7, Section
5.2]. Adding the constraint K(x,X) � 0 reduces the gap obtained using SOC-RLT cuts in [7], but
is not sufficient to give the true optimal value of the problem.
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Fig. 1. Results on TTRS instances not solved using SOC-RLT cuts
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example a problem with n = 20, using the maximum of 25 KSOC cuts, requires less265

that 2 seconds of CPU time, with over 95% of the time dedicated to the SeDuMi266

solver.267

In addition to the relative gap criterion (6), [7] considers a measure of the rank268

of the solution matrix Y (x∗, X∗). Letting λ1 ≤ λ2 ≤ . . . λn+1 be the eigenvalues269

of Y (x∗, X∗), this measure is the eigenvalue ratio λn+1/λn. In [7] it is shown that270

empirically the eigenvalue ratio is closely related to the relative gap γ(x∗, X∗), and271

there is a gap in the observed eigenvalue ratios around 104 that naturally separates272

“solved” and “unsolved” problems. In Figure 1 we illustrate the distributions of the273

eigenvalue ratios obtained on our suite of test problems using SOC-RLT cuts, KSOC274

cuts and the cuts used by Yang and Burer [17]. It is interesting to note that the275

total number of problems for which the eigenvalue ratio satisfies λn+1/λn ≥ 104 using276

KSOC cuts is almost identical to the number of instances that satisfy λn+1/λn ≥ 104277

using YB cuts. However, it is clear from Figure 1 that the distributions of eigenvalue278

ratios obtained using KSOC cuts is quite different from the distribution obtained279

using YB cuts. In particular, using KSOC cuts there are no problems with eigenvalue280

ratios between 103 and 106, while the results using YB cuts have many problems with281

eigenvalue ratios in this range. It should also be noted that the limit of 25 KSOC282

cuts used here is not a critical design factor; we find that problems are typically either283

solved using a small number of cuts, or alternatively will continue to generate cuts but284

not substantially improve measures such as the eigenvalue ratio λn+1/λn and relative285

gap γ(x∗, X∗). In the instances considered in Table 1, all but one of the 85 problems286

that were unsolved using KSOC cuts reached the limit of 25 cuts; one problem of size287

n = 20 terminated with K(x∗, X∗) � 0 after 23 cuts were added. On the other hand,288

of the 127 instances that were solved using KSOC cuts, the average number of cuts289

required was 8.8 and all but five (three with n = 5 and two with n = 20) terminated290

with K(x∗, X∗) � 0 before 25 cuts were added.291

Since the methodology based on the KSOC constraint used here is completely292

different from that used in [17], and neither method solves some of the problems from293

[7], it is reasonable to consider simultaneously applying both classes of cuts. Sam294

Burer (private communication) implemented such a “combined” method by adding295

the separation routine for KSOC cuts to the algorithm of [17]. It turns out that of296

the 56 problems that could not be solved using either KSOC or YB cuts alone, three297

problems (all with n = 20) can be solved when both classes of cuts are implemented298

together. Burer also reports that the separation problem for KSOC cuts is solved299

much faster than that for YB cuts.300

Acknowledgement. I am grateful to Sam Burer for providing details of the301

computational results from [17] and for testing the “combined” method with KSOC302

cuts added to the algorithm of [17], and to two anonymous referees for a number of303

suggestions that improved the paper.304
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