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KRONECKER PRODUCT CONSTRAINTS WITH AN
APPLICATION TO THE TWO-TRUST-REGION SUBPROBLEM

KURT M. ANSTREICHER*

Abstract. We consider semidefinite optimization problems that include constraints of the form
G(z) » 0 and H(xz) »= 0, where the components of the symmetric matrices G(-) and H(-) are
affine functions of z € R™. In such a case we obtain a new constraint K(z,X) > 0, where the
components of K(-,-) are affine functions of z and X, and X is an n X n matrix that is a relaxation
of zzT. The constraint K (x, X) > 0 is based on the fact that G(z) ® H(z) = 0, where ® denotes the
Kronecker product. This construction of a constraint based on the Kronecker product generalizes the
construction of an RLT constraint from two linear inequality constraints, and also the construction
of an SOC-RLT constraint from one linear inequality constraint and a second-order cone constraint.
We show how the Kronecker product constraint obtained from two second-order cone constraints
can be efficiently used to computationally strengthen the semidefinite programming relaxation of the
two-trust-region subproblem.

Key words. Semidefinite programming, Semidefinite optimization, Nonconvex quadratic pro-
gramming, Trust region subproblem.

AMS subject classifications. 90C20, 90C22, 90C26.

1. Introduction. Let A and B be m x n and p X ¢ matrices. The Kronecker
product A ® B is the mp X ng matrix

allB almB
A®B=

amiB - amnB

Important properties of Kronecker products for our purposes are collected in the
following proposition; for details see for example [10, Chapter 4]. We use A > 0 to
denote that a matrix A is symmetric and positive semidefinite (PSD). For matrices
A and B of the same dimensions we use A ¢ B to denote the matrix inner product
Ae B =tr(ABT).

PROPOSITION 1. If A and CT have the same number of columns, and B and DT
have the same number of columns, then (A ® B)(C ® D) = AC ® BD. Moreover
(A B)' = AT @ BT, and if A= 0 and B = 0, then A® B = 0.

We are interested in the situation where a semidefinite optimization problem in
the variables © € R™ and X € R™*"™ also includes constraints of the form G(z) > 0
and H(x) = 0, where the components of G(-) and H(-) are affine functions of . The
matrix X is a relaxation of the rank-one matrix xz”, and is typically constrained via
the semidefinite restriction X = zzT. It is not assumed that the dimensions of the
matrices G(x) and H(z) are identical. Since G(z)® H (z) = 0 is also a valid constraint
by Proposition 1, we can replace every term of the form x;z; in G(z) ® H(x) with
Xi; to obtain a valid constraint K(x,X) > 0, where the entries of K(-,-) are affine
functions of z and X. We refer to a constraint generated in this fashion as a Kronecker
product constraint.
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Example 1. Let G(z) = b—aTz, H(z) = d — cT'z. Then

G(z)® H(x) = (aTx)(c"z) — b(c"z) — d(a”z) + bd
K(z,X)=ac’ « X — (be + da)Tx + bd.

In this case K(z,X) > 0 is exacty the constraint obtained using the well-known
Reformulation-Linearization Technique (RLT) [15] applied to the two linear inequal-
ities aTa < b, ¢Tx < d. In this case the constraint K(xz,X) > 0 is commonly refered
to as an ordinary RLT constraint.

Example 2. Let G(z) = b— a’z, and let H(x) be the matrix for the PSD represen-
tation of the second-order cone (SOC) constraint ||A(z — h)|| < 1;

H(x) = <(x ) i{)TAT A(xl— h)> - 0.

In this case
—a’x —a"z)A(z -

reox = (Goon JEx).

where v(z, X) = (aTx — b)Ah + bAr — AXa. Then K(z,X) = 0 is the PSD repre-
sentation of the constraint formed by replacing zz” with X in the valid constraint
||(b—aTz)A(z — h)|| < b—aTz. Constraints of this type were introduced in [16], and
were subsequently termed “SOC-RLT” constraints in [7].

Example 3. Consider two strictly convex quadratic constraints expressed in SOC
form as ||z|| <1 and ||A(z — h)|| < 1, where A is an n x n nonsingular matrix. These
constraints can be alternatively expressed in PSD form as G(z) *= 0, H(z) > 0, where

6= (e 7). H@= (a1,

Since G(x) > 0 and H(x) = 0, it follows that the Kronecker product G(z)® H (z) > 0,

where

G(z)® H(z) = :
x1H(z) -+ z,H(z) H(x)
To generate a valid constraint on (x,X) we replace any products z;x; with X;; in

G(z) ® H(x). Such products occur in terms of the form z;A(x — h) = Az;x — x;Ah,
where x;x — X, the jth column of X. Defining

) o l‘j[ A(X] — x]h)
Hj(va)_ ((Xj—xjh)TAT T, )
we can write a valid PSD constraint K (x, X) = 0, where
H(x) Hy(z, X)
1 Kz, X) =
W ) H(z)  Hp(z, X)
Hi(z,X) -+ Hp(z,X) x)
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In this case we refer to the Kronecker product constraint K(z, X) > 0 as a “KSOC”
constraint. We will consider constraints of this form in more detail in the next section.

2. KSOC constraints. In this section we further study the Kronecker product
constraint K (z,X) > 0, with K(-,-) as in (1), that is generated from two SOC
constraints ||z < 1, ||[A(z — h)|| < 1. We assume throughout that A is nonsingular.
To begin, we note that the problem of generating additional valid constraints on
(z, X) that are implied by these two SOC constraints was previously considered in
[7]. The approach taken in [7] was based on using a linear constraint a”z < 1, where
|la]| = 1, together with the SOC constraint ||A(xz — h)|| < 1, to generate an SOC-RLT
constraint as in Example 2 of the previous section. Note that the constraint e’z < 1
is a supporting hyperplane for the ball {z|||z|| < 1} at = a. It is shown in [7] that
using all such SOC-RLT constraints, corresponding to different choices of a with ||a|| =
1, is equivalent to the use of all possible ordinary RLT constraints generated using
supporting hyperplanes for both {z|||z| < 1} and {z || A(z — h)|| < 1}. However,
the separation problem of finding an a with ||a|]| = 1 so that the resulting SOC-RLT
constaint is currently violated can be efficiently solved as a trust-region subproblem,
while the problem of finding two supporting hyperplanes so that the resulting ordinary
RLT constraint is violated is bilinear.

We will next show that the KSOC constraint K (z, X) > 0 implies all possible
SOC-RLT constraints that arise from using an a with ||a|| = 1 together with the SOC
constraint ||A(z — h)|| < 1. As described in Example 2 of the previous section, such
an SOC-RLT constraint has the form ||(aTz — 1)Ah + Az — AXa| <1 —a'a.

LEMMA 2. Suppose that ||a|| = 1 and K(z,X) = 0, with K(-,-) as in (1). Then
l(aTz —1)Ah + Az — AXa| <1—aT2.

Proof. Since K(xz,X) = 0 it must also be that

[(—a", 1) @ I] K(x,X) K‘f‘) ®[} = 0.

However

H(x) Hy(z,X) —aq 1
=(—a1[,...,—anl,1)
H(x) H,(z,X) —anl
—a1H(z) + Hy(z, X)
=(—a1l,...,—a,1,I) :
—a,H(z) + Hy(z, X)

H(x) = 375, a;Hj(w, X)

=(1+a"a)H(z) -2 zn: a;jH;(z,X)

=2[H(x) =Y a;H;(z, X)),

j=1
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implying that H(z) — >>"_, a;H;j(z, X) = 0. But

Zaﬂ

A ~ Zj 7 A(Xj - xjh)
( )T AT ) 21 v ( —z;h)TAT zj
j=
(1—aT2)I Az —h) =370 a;(AX; — x;Ah)
TAT =370 aj(AX; — x;Ah)" (1—aTx)
B (1—aTz)I (aTz —1)Ah + Az — AXa
- T hTAT —l—.TTAT TXTAT (1 _ aTx) ’

=) H(x) — > j—1a;Hj(z, X) = 0 is exactly the PSD representation of the SOC-RLT

constraint ||(aT2z — 1)Ah + Az — AXa| <1—aTx. |

Lemma 2 shows that the use of the KSOC constraint K (z,X) > 0 implies all
possible SOC-RLT constraints used in [7], but it does not show that the constraint
K(z,X) = 0 is actually stronger. In the computational results of the next section
we will demonstrate that in at least some cases the constraint K(z, X) > 0 is in fact
stronger than all possible SOC-RLT constraints used in [7].

From a computational standpoint, one difficulty with the constraint K (xz, X) = 0
is that the size of the matrix K (-,-) is (n+1)? x (n+1)2, and therefore even a modest
underlying dimension n will result in a very large PSD constraint. Fortunately it
is possible to use the block structure of K(-,-) from (1) to express K(z,X) = 0 as
semidefiniteness of an (n+1) x (n+1) matrix. The fact that this much smaller matrix
can be efficiently computed facilitates the use of a cut-generation scheme for enforcing
K(z,X) = 0.

LEMMA 3. Suppose that K(z,X) = 0, with K(-,-) as in (1). Then ||z|| < 1 and
|A(z — h)|| < 1. In addition, if either ||z|| =1 or |A(z — h)|| =1 then X = za”.

Proof. That K(x,X) = 0implies H(z) > 0 is obvious since H(z) occurs as a prin-
cipal submatrix of K (x, X). However G(z) is also a principal submatrix of K (z, X),
corresponding to the rows and colums indexed by the (n + 1,n + 1) components of
each diagonal block of K (z, X), so K(z,X) *= 0 also implies that G(x) = 0. To prove
the remainder of the lemma, consider a nonsingular symmetric transformation of the
form

V(z)T V(x) —xq I
K'(x,X) = . V)T K(z,X) V() el ,
P S B | I

where

T(x) Wy (z, X)
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1) =V H@ve = (1) o) =1 A -0,

W, (2, X) = V() [Hy (2, X) — 2;H(z)] = < ( 0 A(X; — o)

X;—xjx)t AT (h—2)TATA(X; — zjz)

Z(x, X) = (L+||z|*)H(z) =2 a;H;(2, X)
j=1

1 Alx —h
=+ el pyrar )
. - ) ach A(X] — .T]h>
? z:l " <(Xj —x;h)TAT z; '
=
Collecting terms, we obtain

_ s(x)I 2A(x — Xx) — s(x)A(x + h)
@) 2(@ X) = (2(:5 ~ Xa)TAT — s(x)(x + h)TAT s(x) ) ’

where s(z) = 1—||z||%. Since K'(x, X) = 0, t(x) = 0 implies that each row and column
corresponding to the diagonal entries of K'(z,X) equal to ¢(z) must be zero, and
therefore A(X; — xjx) = 0 for each j. But then A(X —x2T) = 0, implying X = zaT
since A is nonsingular. Similarly if s(z) = 0 then Z(z, X) = 0 and W;(z, X) = 0 for
each j, again implying that A(X — z2”) = 0 and therefore X = xa7T. d

The first result in Lemma 3 is reminiscent of the well-known fact [15] that when
generating ordinary RLT constraints from linear inequalities, the set of all possible
RLT constraints implies the original inequality constraints. Note that if X = zz”,
then the vector 24(z — Xx) — s(z)A(x + h) in the upper right and lower left blocks
of Z(z,X) is equal to s(z)A(x — h). In this case W;(z,X) = 0 for each j, and
Z(z,X) = s(x)H(x).

We next consider further elimination of the off-diagonal blocks in K’(z, X) when
X # zz’. From Lemma 3 we know that if K(z,X) = 0 then we would certainly
have s(z) > 0 and t(z) > 0. However we are ultimately interested in generating a cut
when in fact K(x,X) % 0. In the context of interest we will enforce the constraint
X = x2T, and also the constraints tr(X) < 1 and AT Ae X —2hT AT Az < 1-hT AT An
obtained from the original SOC constraints ||z|| < 1 and ||A(z — h)|| < 1. We omit
the easy proof of the following result.

LEMMA 4. Assume that X = xaT, tr(X) < 1 and ATA e X — 2nT AT Ax <
1 —hTAT Ah. Then s(z) =1 —||z]|> > 0 and t(x) = 1 — ||A(z — h)||*> > 0. Moreover
if X # xaT then s(z) > 0 and t(z) > 0.

Assuming that t(z) > 0, let W;(z, X) = T(x) " 'W;(z, X), and define

T'(z)
K'(2,X)=U(z, X)"K'(2, X)U(z,X) = 7
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where

I Wi (2, X)
Viw X) = I —Wa(z,X)
I
and
(3) 7', X) = Z(x,X) *ZWJ(%X)TT(f)*le(%X)-

Using the definition of W;(x, X), and letting X = X — 227, it is straightforward to
compute that W;(x, X)TT(x) "1 W;(x, X) is equal to

ey AX; XT AT ey AX;XT AT A(h - ) 2
5 (h— o) TATARRTAT XTATAR; + o5 ((h— 2)TATAR;) )

and therefore Y7, W;(z, X)I'T(x)~'W;(z, X) is equal to

4 — ~ ~ ~ ~
) t(x) \(h—2)TATAX?AT t(z)tr(XATAX) + | XATA(h — 2)|?
Substituting (4) and (2) into (3) we obtain a complete expression for Z’'(z, X).

With ¢(z) > 0, we have by construction K(z,X) = 0 <= K"(z,X) = 0 <=
Z'(z,X) = 0. If the latter does not hold for values (z, X) = (Z, X), there is a vector
a € R"! with a”Z'(Z,X)a < 0. It then follows that bY K (Z, X)b < 0, where

1 ( AX2AT AXZATA(h — 1) )

V(z) —z11 I -Wi(z,X) 0
b= - I
V(z) —z,1 I —-W,(z,X) 0
I I a
~V(2)W1(Z,X)a — Z1a B;
a ~V(2)W,(Z,Z)a — Tpa B B,
a a

Then b7 K (z, X)b > 0 is a valid, linear constraint on (z, X) that is violated at (z, X).
Using the definition of K (z, X) from (1), we have

(5) V'K (x, X)b=a” H(x)a + zn: BFH(x)B; + 2 zn: a"Hi(z, X)B;.

i=1 =1

a B; .
a—<a>, Bi_(ﬂz‘)’ i=1,...,n,

a’H(x)a = ||a||* + 2aa” A(z — h) + o
B'H(2)B; = ||Bi|* + 26:B; A(x — h) + 2
CLTHZ‘(ZZ’, X)Bz = dTEi:ci + 61(7,TA(X1 — I’lh) + QE?A(XZ — I’lh) + Oéﬂz.’tl
6

Letting

we have
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Substituting these expressions into (5) and collecting terms, we obtain a valid linear
inequality (cut) of the form C @ X + c¢T2 +§ > 0, where C ¢ X +cTz 4+ < 0. We
refer to a linear constraint obtained in this fashion as a “KSOC cut.”

3. Computational results. In this section we consider the application of Kro-
necker product constraints to instances of the two-trust-region subproblem (TTRS).
The TTRS, also referred to as the Celis-Dennis-Tapia (CDT) problem [8], arises as
a direction-finding subproblem in certain trust-region based methods for nonlinear
optimization [9]. The TTRS has the form

TTRS : minz?Qz + 'z
st flz] <1, [[Al@—h)[| <1

where (Q is an n X n symmetric matrix that is not assumed to be PSD. TTRS is a
heavily studied problem. Optimality conditions for TTRS are considered in [5], [6],
[11] and [13]. In some cases these conditions can provide a constructive proof that
a locally optimal solution for TTRS is in fact the global optimum. A convergent
trajectory-following method for TTRS is described in [18]. This method is not prov-
ably polynomial-time, but a polynomial-time algorithm for TTRS based on methods
for polynomial equations [2] is described in [4].
The basic SDP (Shor) relaxation for TTRS is

TTRSspp : minQ e X + ¢’z
st. ATAe X —2nTAT Az <1 — hT AT Ah
tr(X) <1, X = xxT.

The PSD constraint X = 2z can be enforced by requiring that Y (x, X) = 0, where

Y (2, X) = (; “;)

It is well known that the Shor relaxation TTRSgpp can have a nonzero optimality gap,
unlike the simpler trust-region subproblem TRS (TTRS without the second constraint
|[A(z — h)|| < 1), for which the Shor relaxation is tight [14]. Note that if (z, X) is
feasible in TTRSgpp then z is feasible in TTRS, so an optimal solution (x*, X*) of
TTRSspp provides both a feasible objective value v(z*) = *TQu*+cTa* as well as a
lower bound z(z*, X*) = Qe X*+cTz*. There are a variety of results (see for example
[1] and [3]) that give conditions under which the Shor relaxation for TTRS is in fact
tight, i.e. v(z*) = z(z*, X*); one example [18, Section 2.2] is the “homogenous” case
where ¢ = h = 0. There are also cases where optimality conditions for TTRS can
establish global optimality for problems where the Shor relaxation is not tight; see for
example [5, 6].

For the general case of TTRS, in which the Shor relaxation may not be tight,
the approach taken in [7] is to start with TTRSgpp, and then add violated SOC-RLT
constraints based on the second-order cone constraints of the problem as in Example 2
of Section 1. After each constraint addition the problem is re-solved and an attempt is
made to generate another violated SOC-RLT constraint. This process continues until
either no violated constraint can be found, or 25 SOC-RLT constraints are added. At
termination, an instance is considered to be solved if the relative gap satisfies

v(z*) — z(z*, X*)
[v(z)]

7

(6) y(z*, X*) = <1074,
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TABLE 1
Comparison of results using KSOC cuts versus Yang and Burer (2016)

Number of instances solved by:

n | Instances | KSOC only | YB only | KSOC and YB | Neither

5 38 8 8 12 10

10 70 34 7 14 15
20 104 35 14 24 31
212 77 29 50 56

where (2*, X*) is the optimal solution of TTRSgpp with the added SOC-RLT con-
straints. This approach is applied to instances of TTRS that are generated based on
a theorem of Martinez [12] that are likely to have a gap for TTRSgpp (that is, have
~v(x*, X*) > 0 for the solution (z*, X*) of TTRSspp). Using the approach of gener-
ating SOC-RLT cuts and a test set consisting of 1000 problems each of dimension 5,
10 and 20, the numbers of unsolved instances are then 41, 70 and 104, respectively.

The results of [7] are improved on by [17]. The methodology of [17] is based on
a detailed study of TTRS for n = 2. This approach results in an exact cutting-plane
algorithm for n = 2 that can also be extended heuristically to higher dimensions'.
When applied to test problems from [7], the algorithm of [17] also solves some of the
instances that are unsolved using SOC-RLT cuts. Due to differences in the solver and
parameter settings, the number of instances that are unsolved using SOC-RLT cuts
for dimensions 5, 10 and 20 are taken to be 38, 71 and 106, respectively in [17].

The approach we consider here is to again start with the Shor relaxation TTRSgpp
but to add cuts based on the Kronecker product constraint K (x, X) = 0 as described
in the previous section. After each cut addition the problem is re-solved and an
attempt is made to generate a new violated constraint. We continue until either
K(z*,X*) » 0, in which case no constraint can be generated, or 25 KSOC cuts
have been added. We apply this procedure to the TTRS problems from [7] that
were reported as not solved using SOC-RLT cuts in both [7] and [17]; these are the
38 problems with n = 5 reported as unsolved in [17] and the 70 (respectively 104)
problems with n = 10 (respectively n = 20) reported as unsolved in [7]. Note that by
Lemma 3 the condition K (z,X) > 0 implies all of the SOC-RLT cuts that could be
added, so the problems that were successfully solved using SOC-RLT cuts would also
be solved using the approach based on adding the KSOC constraint K (z, X) = 0. We
verified that all of these problems are also solved by the procedure that adds up to
25 KSOC cuts.

In Table 1 we give a comparison of the results from [17] versus results using cuts
based on the KSOC constraint on the instances from [7] that were not previously
solved using SOC-RLT cuts. As shown in Table 1, overall results based on the KSOC
constraint are better than those from [17], but neither method dominates the other. In
all cases a problem is considered to be solved if the relative gap criterion (6) is satisfied
at termination. Our computations were performed on a 64-bit PC with an Intel i7-
6700 CPU running at 3.40 GHz with 16G of RAM, using the Matlab-based SeDuMi
solver. Solution times for the problem sizes considered here were quite modest; for

IThe addition of K(z,X) = 0 to TTRSspp is not sufficient to give an exact representation of

TTRS for n = 2. This can be demonstrated by numerically solving the example given in [7, Section
5.2]. Adding the constraint K (z, X) > 0 reduces the gap obtained using SOC-RLT cuts in [7], but
is not sufficient to give the true optimal value of the problem.

8
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Number of problems

Number of problems

Number of problems

20

15

10

n=5

B SOC-RLT
m KSOC
=YB
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
log_10 of eigenvalue ratio
B SOC-RLT
HKSOC
mYB
0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
log_10 of eigenvalue ratio
n=20
B SOC-RLT
B KSOC
mYB

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
log_10 of eigenvalue ratio

F1c. 1. Results on TTRS instances not solved using SOC-RLT cuts
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example a problem with n = 20, using the maximum of 25 KSOC cuts, requires less
that 2 seconds of CPU time, with over 95% of the time dedicated to the SeDuMi
solver.

In addition to the relative gap criterion (6), [7] considers a measure of the rank
of the solution matrix Y (z*, X*). Letting Ay < Ay < ...A,41 be the eigenvalues
of Y(x*, X*), this measure is the eigenvalue ratio A,11/\,. In [7] it is shown that
empirically the eigenvalue ratio is closely related to the relative gap ~v(z*, X*), and
there is a gap in the observed eigenvalue ratios around 10* that naturally separates
“solved” and “unsolved” problems. In Figure 1 we illustrate the distributions of the
eigenvalue ratios obtained on our suite of test problems using SOC-RLT cuts, KSOC
cuts and the cuts used by Yang and Burer [17]. It is interesting to note that the
total number of problems for which the eigenvalue ratio satisfies A, +1/A, > 10* using
KSOC cuts is almost identical to the number of instances that satisfy \,1/\, > 104
using YB cuts. However, it is clear from Figure 1 that the distributions of eigenvalue
ratios obtained using KSOC cuts is quite different from the distribution obtained
using YB cuts. In particular, using KSOC cuts there are no problems with eigenvalue
ratios between 10% and 105, while the results using YB cuts have many problems with
eigenvalue ratios in this range. It should also be noted that the limit of 25 KSOC
cuts used here is not a critical design factor; we find that problems are typically either
solved using a small number of cuts, or alternatively will continue to generate cuts but
not substantially improve measures such as the eigenvalue ratio A,4+1/), and relative
gap v(x*, X*). In the instances considered in Table 1, all but one of the 85 problems
that were unsolved using KSOC cuts reached the limit of 25 cuts; one problem of size
n = 20 terminated with K (z*, X*) > 0 after 23 cuts were added. On the other hand,
of the 127 instances that were solved using KSOC cuts, the average number of cuts
required was 8.8 and all but five (three with n = 5 and two with n = 20) terminated
with K (z*, X*) = 0 before 25 cuts were added.

Since the methodology based on the KSOC constraint used here is completely
different from that used in [17], and neither method solves some of the problems from
[7], it is reasonable to consider simultaneously applying both classes of cuts. Sam
Burer (private communication) implemented such a “combined” method by adding
the separation routine for KSOC cuts to the algorithm of [17]. Tt turns out that of
the 56 problems that could not be solved using either KSOC or YB cuts alone, three
problems (all with n = 20) can be solved when both classes of cuts are implemented
together. Burer also reports that the separation problem for KSOC cuts is solved
much faster than that for YB cuts.

Acknowledgement. I am grateful to Sam Burer for providing details of the
computational results from [17] and for testing the “combined” method with KSOC
cuts added to the algorithm of [17], and to two anonymous referees for a number of
suggestions that improved the paper.
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