
Geometric Conditions for Euclidean Steiner Trees in �d

Jon W. Van Laarhoven
Department of Applied Mathematics and Computational Sciences

University of Iowa, Iowa City, IA 52242
jon-vanlaarhoven@uiowa.edu

Kurt M. Anstreicher∗

Department of Management Sciences
University of Iowa, Iowa City, IA 52242

kurt-anstreicher@uiowa.edu

July 1, 2010

Abstract

We present geometric conditions that can be used to restrict or eliminate candidate topologes for
Euclidean Steiner minimal trees in �d, d ≥ 2. Our emphasis is on conditions that are not restricted
to the planar case (d = 2). For trees with a Steiner topology we give restrictions on terminal-Steiner
connections that are based on the Voronoi diagram associated with the set of terminal nodes. We then
describe more restrictive conditions for trees with a full Steiner topology and show how these conditions
can be used to improve implicit enumeration algorithms for finding Euclidean Steiner minimal trees with
d > 2.

Keywords: Euclidean Steiner tree, branch and bound, Voronoi diagram, Delaunay trian-
gulation

∗Corresponding author

1

1 Introduction

The objective of the Euclidean Steiner tree problem (ESTP) is to determine the minimal length tree

(with respect to the Euclidean metric) spanning a set of terminal points, X ⊂ �d, while permitting the

introduction of extra Steiner points S into the network to reduce its overall length. The ESTP is a difficult

combinatorial optimization problem; Garey et al. (1977) shows that the recognition version of ESTP is NP-

hard. Arora (1998) shows that ESTP belongs to the class of NP-hard problems which have a polynomial-time

approximation scheme (PTAS).

A topology is a configuration of terminal points and Steiner points where the connections are specified,

but the locations of the Steiner points are not. A topology is said to be a Steiner topology if every Steiner

point has degree 3 and every terminal node has degree at most 3. A Steiner topology where all terminal

points have degree one is a full Steiner topology (FST). Any non-full Steiner topology can be identified with

a FST where some edges have zero length; such a FST is called degenerate. A solution to the ESTP problem

is called a Steiner minimal tree (SMT). It can be shown that a SMT has a Steiner topology. Other known

results regarding SMT’s include (Gilbert and Pollak, 1968):

• The angle condition: the angles between edges connecting a Steiner point and its 3 neighbors are all

120 degrees.

• A SMT is a concatenation of FST’s on subsets of terminal points.

• A SMT for a problem on N terminal points has at most N − 2 Steiner points.

The main difficulty with solving the ESTP to optimality is that the number of Steiner topologies grows

extremely rapidly with n, the number of terminals. For planar ESTP (d = 2), a sequence of advancements

have lead to substantial increases in the size of instances that can be solved to optimality by exact algorithms.

In particular, the Geosteiner algorithm (Winter and Zachariasen, 1997; Warme et al., 2001) makes intensive

use of geometric exclusion criteria to eliminate candidate topologies and is capable of solving instances with

thousands of terminal points. For higher dimensions, however, exact algorithms are very limited as most of

the known pruning rules are inapplicable when d > 2. The most interesting case with d > 2 is of course

d = 3; see for example Smith and Toppur (1996).

For d > 2, the scheme of Smith (1992) is the best known method for computing and verifying the

optimality of a SMT. Smith’s algorithm is based on an implicit enumeration of FSTs, where each level k ≥ 0

of the enumeration tree has nodes corresponding to all FSTs on a subset of n = k + 3 terminal nodes.

The descendants (“children”) of a given partial FST are obtained by replacing in turn each edge l of the

corresponding tree with 3 edges connecting a Steiner point and a new terminal using the “sprout” or “merge”

operation illustrated in Figure 1. Smith showed that by performing this merge operation N − 3 times, all

possible FSTs on the N terminal points will be generated. In addition, it can be shown that the merge

operation cannot decrease the minimal length of a tree with the given topology, so if the minimal length

2

tree with a given partial FST is longer than a known Steiner tree on all the terminal points, it and all of

its descendants can be removed from consideration (or “fathomed” in the terminology of branch-and-bound

algorithms). The Smith+ algorithm of Fampa and Anstreicher (2008) enhances the algorithm of Smith

(1992) by using second-order cone programming to locate the Steiner points as well as “strong branching”

to accelerate the fathoming process. For d > 2, the Smith+ algorithm is capable of solving instances with

about N = 16 terminal points to optimality.

Figure 1: The “merge” operation used to create descendants in Smith’s enumeration scheme

The main drawback of Smith’s algorithm is that the fathoming criterion (the minimal length of a tree with

a given FST on a subset of the terminals) is quite weak, and cannot be expected to remove many topologies

from consideration until a substantial number of the terminal points are included. This deficiency, combined

with the fact that the number of distinct FSTs grows super-exponentially with the number of terminals,

means that the enumeration process can easily get out of hand for even relatively small problems.

A surprising feature of Smith’s scheme is that it makes no use of geometry whatsoever to reduce the

search space that must be considered. By contrast the GeoSteiner algorithm, which is restriced to d = 2,

makes very extensive use of geometric exclusion criteria. One difficulty in trying to apply geometric criteria

to Smith’s algorithm is that the FSTs at intermediate nodes in the enumeration tree only include a subset

of terminal points. As a result, even if some property of SMTs is violated at an intermediate node, it is

possible that after some number of merge operations the property will hold (“bad” partial FSTs can have

“good” descendants). Our goal in this paper is to derive geometric conditions that apply for d > 2 and that

can be used to eliminate partial FSTs from further consideration.

In the next section we describe geometric conditions that apply to SMTs in �d, d ≥ 2. The conditions

that we describe are all related to the Voronoi diagram induced by the terminal nodes, and extend to the

nonplanar case. In section 3 we describe stronger conditions that apply to SMTs having a FST. These

conditions are of particular interest for d > 2 since Smith’s enumeration scheme works with FSTs. In section

4 we show how the geometric conditions developed in section 3 can be used to enhance fathoming of candidate

partial FSTs in Smith’s algorithm, and give computational results on test problems with d > 2.

3

2 Geometric conditions for Euclidean Steiner minimal trees

Let X ⊂ �d be a set of terminal points {x0, ..., xN−1}, and assume without loss of generality that x0

is the origin in �d. Denote a set S ⊂ �d of Steiner points by {s1, ..., sk}. The Voronoi diagram of X is a

partitioning of �d into polyhedra with one node xi in each polyhedra. For every point x ∈ X the Voronoi

region about x, denoted vor(x) consists of all points no further from x than from any other point in X ; that

is vor(x) = {u ∈ �d : ||u − x|| ≤ ||u − y|| ∀ y ∈ X}. Since the Voronoi regions are polyhedra they have

extreme points, which are called Voronoi points . Let V = {v1, .., vm} be the set of Voronoi points. The

Voronoi diagram is a natural candidate for developing geometric criteria for SMTs since it exists for X ⊂ �d

for any d, and is itself defined by a condition involving Euclidean norms. The dual of the Voronoi diagram is

called the Delaunay tesselation. More specifically, to each Voronoi point v there is an associated Delaunay

cell consisting of the convex hull of {x ∈ X : v ∈ vor(x)}. When the points X ⊂ �d are in general position,

each Voronoi point is containined in exactly d + 1 Voronoi regions, and each Delaunay cell is a simplex. In

this case the Delaunay tesselation is a partioning of the convex hull of X into simpleces, and the tesselation

is a triangulation. Since Delaunay cells that are not simpleces can always be further partioned to obtain a

triangulation, the Delaunay tesselation is often referred to as the Delaunay triangulation. For more details

on properties of the Voronoi diagram and Delaunay triangulation see for example De Berg et al. (2008).

Let Bδ(x) denote the closed ball of radius δ centered at x. The lune between two points u and v, denoted

l(u, v) is defined as B‖u−v‖(u) ∩ B‖u−v‖(v). Lunes are the basis for the following well-known geometric

criterion for SMTs, the lune condition.

Proposition 1. (Gilbert and Pollak, 1968) If points u and v are connected in a SMT, then the interior of

l(u, v) contains no other nodes of the SMT.

The lune condition is an example of a geometric condition that can be used to exclude connections

between points in the SMT. For example, if there are terminals x, y, z such that z is in the interior of

l(x, y), then x and y cannot be connected in a SMT. The lune condition is also related to the Delaunay

triangulation, as shown in the next lemma. For points X in general position we say that terminals xi and

xj are adjacent in the Delaunay triangulation if xi and xj are vertices of a common simplex in the Delaunay

triangulation, or equivalently if vor(xi) and vor(xj) share a common boundary face of dimension d − 1.

Lemma 2. Suppose that the points in X are in general position. If two terminals xi and xj are not adjacent

in the Delaunay triangulation, then the lune between them contains another terminal node in its interior.

Proof. Let p denote the midpoint of the line segment between xi and xj . First note that p is neither in the

interior of vor(xi) or vor(xj). To see this, assume that p was in the interior of vor(xi). Then there would

be some q also in the interior of vor(xi) such that q was on the line segment between p and xj . But recall

that p was the midpoint of the segment between xi and xj , so this means q is closer to xj than it is to xi

and so could not be in vor(xi), a contradiction. Similarly p is not in the interior of vor(xj). Therefore there

4

is another terminal z so that p ∈ vor(z), z �= xi, z �= xj . (If there were no such z then p would be on a

boundary facet of both vor(xi) and vor(xj), which is impossible since xi and xj are nonadjacent.) We can

now show z ∈ l(xi, xj). For example,

‖xi − z‖ ≤ ‖xi − p‖ + ‖z − p‖ ≤ 2‖xi − p‖ = ‖xi − xj‖,

where the first inequality follows from the triangle inequality and the second follows from p ∈ vor(z).

Likewise, we can show ‖xj − z‖ ≤ ‖xi − xj‖, and these two inequalities combined give z ∈ l(xi, xj). Finally,

if the points X are in general position then the midpoint p cannot be on the boundary of either vor(xi) or

vor(xj), which makes the second inequality strict, and therefore z is in the interior of the lune.

Proposition 1 and Lemma 2 together imply the following well-known property of SMTs.

Corollary 1. Assume that the points in X are in general position. If a SMT contains an edge between

terminal points xi and xj , then xi and xj are adjacent in the Delaunay triangulation.

For points not in general position, Corollary 1 remains true as stated so long as “adjacency” of two

terminals is taken to mean that there is a cell in the Delaunay tesselation containing them both.

2.1 Clover regions

Corollary 1, which concerns connections between terminal points in an SMT, can also be used to prove

a property regarding connections between terminal points and Steiner points.

Lemma 3. Assume that a Steiner point s is connected to a terminal node x in a SMT. Let vor(x) denote

the Voronoi region of x in the Voronoi diagram associated with X. Form the Voronoi diagram of X ∪ {s}
treating s as an additional terminal node, and denote the resulting Voronoi region of s by ̂vor(s). Then
̂vor(s) ∩ vor(x) �= ∅.

Proof. The proof follows from Corollary 1 and the fact that a SMT is also a SMT for the set of terminal

nodes X ∪ {s} where the location of the Steiner point s is fixed.

Note that the condition ̂vor(s) ∩ vor(x) �= ∅ in Lemma 3 is equivalent to the hyperplane {u : ||u − s|| =

||u− x||} intersecting vor(x), and since vor(x) is a polyhedra, this hyperplane intersects vor(x) if and only if

||v − s|| ≤ ||v − x|| for one of the Voronoi points v of vor(x). This leads us to the concept of a clover region

associated with x, denoted clover(x). For convenience take x = x0 = 0, and let the Voronoi points in vor(0)

be {v1, . . . , vk}. We consider connecting x0 to a Steiner point s and ask where s may lie so that Lemma 3

is satisfied. The perpendicular bisector between x0 and s can be written {u | sT u = sT
(

s
2

)
= ||s||2

2 }. Note

5

that vi and s are on opposite sides of this bisector if sT vi < ||s||2
2 . Then define

Ci = {s | ||s||2 ≤ 2sT vi}
= {s | (sT s − 2sT vi + vT

i vi) − vT
i vi ≤ 0}

= {s | ||s − vi||2 ≤ ||vi||2}
= B‖vi‖(vi).

For each Voronoi point vi of vor(x0), the associated ball Ci describes where a Steiner point can lie so that
̂vor(s) contains vi. We define clover(x0) to be the union of these balls over the Voronoi points {v1, . . . , vk}.
We similarly construct clover(xj) for each terminal node xj , j = 1, . . . , N − 1. Note that by construction

each sphere Ci has the property that it intersects the terminal points xj such that vi ∈ vor(xj); in other

words, each Ci is the circumsphere of a Delaunay simplex. Thus for each xj , clover(xj) is the union of the

circumspheres of the Delaunay simpleces that have xj as a vertex. See Figure 2 for the illustration of a

typical clover region for d = 2.

The clover region represents a first attempt at using geometry to restrict topologies that involve Steiner

points. In particular, note that if xi and xj are connected to the same Steiner point, then their clover regions

must intersect. Moreover, since clover(xi) and clover(xj) are both the unions of spheres, the condition that

clover(xi)∩clover(xj) �= ∅ can be efficiently checked. In the sequel we will develop more restricive conditions

that must be satisfied if two points xi and xj are connected to the same Steiner point.

2.2 Lunar regions

Lemma 3, which leads to the definition of a clover region, itself can be viewed as a consequence of the

lune condition. A natural question is then if the lune condition can be directly used to give a more restrictive

condition for connections between a terminal node and a Steiner point in a SMT. To answer this question we

consider the terminal x0 = 0 connected to a Steiner point s, and determine the restrictions on the location

of s implied by the other terminals and the lune property. In particular, s cannot be located so that l(0, s)

contains another terminal node x in its interior, meaning that for this particular x we need

either ||x − s|| ≥ ‖s‖ ⇔ sT s ≤ xT x − 2sT x + sT s ⇔ sT x ≤ ||x||2
2

,

or ‖s‖ ≤ ‖x‖.

The feasible set corresponding to these two conditions is the union of a halfspace and a halfsphere, where

the hyperplane bounding the halfspace bisects the sphere. There is such a region for each terminal point

xi ∈ X \ {0}, and taking the intersection of all such regions for xi adjacent to x0 = 0 in the Delaunay

triangulation, we arrive at the lunar region associated with x0, denoted lunar(x0)1. We can similarly associate

1It can be shown by example that there are cases where the lunar region can be further restricted by imposing constraints

from terminals that are not adjacent to x0 in the Delaunay triangulation.

6

Figure 2: A clover region

Figure 3: A lunar region

7

a lunar region lunar(x) to every terminal x ∈ X . A typical lunar region for d = 2 is depicted in Figure 3.

We will show below that for any terminal x, lunar(x) ⊂ clover(x), so the lunar region is a sharper estimate

for possible locations of a Steiner point connected to x than the clover region. As with clover regions, lunar

regions can be used to exclude possible Steiner topologies; if lunar(xi) ∩ lunar(xj) = ∅, then one need not

consider any topology in which xi and xj connect to the same Steiner point. However, because lunar regions

are defined by the intersection of nonconvex constraints, determining whether or not two such regions overlap

is somewhat awkward. We next show that there is an easily-computed convex relaxation of the lunar region

which is itself contained in the clover region.

2.3 Doubled Voronoi cells

The doubled Voronoi cell about x, denoted dvor(x), is simply vor(x) dilated by a factor of two about x;

see Figure 4 for a typical illustration with d = 2. Note that each semi-spherical portion of the lunar region

lunar(x) is tangent to the corresponding bounding hyperplane of the doubled Voronoi cell dvor(x), as shown

in Figure 4. As an immediate consequence of this fact we obtain the following relationship between lunar

regions and doubled Voronoi cells.

Lemma 4. For any terminal node x, vor(x) ⊂ lunar(x) ⊂ dvor(x).

Proof. Assume without loss of generality that x = x0 = 0. Let xi, i = 1, . . . , k be the adjacent terminal

points in the Delaunay triangulation. Then

dvor(x0) = {x |xT
i x ≤ ‖xi‖2

, i = 1, . . . , k}.

The lunar region lunar(x0) is the set of x such that for i = 1, . . . , k either xT
i x ≤ ‖xi‖2

/2 or ‖x‖ ≤ ‖xi‖. Note

that for each i, the first constraint defines the face of vor(x0) induced by xi, and therefore vor(x0) ⊂ lunar(x0).

Moreover if x satisfies the second condition for a given i, then

xT
i x ≤ ‖xi‖‖x‖ ≤ ‖xi‖2

.

It follows immediately that x ∈ dvor(x0) for any x ∈ lunar(x0).

Since dvor(x) is polyhedral for each x ∈ X , the condition that dvor(xi) ∩ dvor(xj) �= ∅ can be efficiently

checked, for example by solving a small linear programming problem. We next show that this condition is

stronger than the analogous condition based on clover regions. See Figure 5 for motivation of the following

theorem, whose proof is due to Carlos de la Mora (private communication).

Theorem 5. For any terminal node x, dvor(x) ⊂ clover(x).

Proof. For simplicity we take x = x0 = 0. Each Delaunay simplex that has x0 as a vertex has an additional

d vertices, each of which is a terminal node. The cones generated by these simpleces partition �d, so any

8

Figure 4: The lunar region is contained in the doubled Voronoi cell.

Figure 5: The doubled Voronoi region is contained in the clover region.

9

u ∈ vor(0) must be in at least one such cone. Assume that u is in the cone generated by xi, i = 1, . . . , d, so

there are λi ≥ 0, i = 1, . . . , d such that
d∑

i=1

λixi = u.

Let v be the Voronoi point that is the center of the hypersphere that circumscribes the simplex with extreme

points xi, i = 0, 1, . . . , d. It follows that ‖xi − v‖ = ‖v‖, i = 1, . . . , d, which is equivalent to

‖xi‖2 = 2xT
i v, i = 1, . . . , d. (1)

Our goal is to show that 2u ∈ clover(0). To do this it suffices to show that

||2u − v|| ≤ ||v||,

which is equivalent to uT u ≤ uT v. Since u ∈ vor(0) we have xT
i u ≤ ‖xi‖2

/2, i = 1, . . . , d, which combined

with (1) implies that xT
i u ≤ xT

i v, i = 1, . . . , d. Therefore

uT u =
∑

i

λix
T
i u ≤

∑
i

λix
T
i v = uT v,

as required.

Although the literature concerning Voronoi diagrams and Delaunay triangulations is extensive, to our

knowledge Theorem 5 is a new result. Lemma 4 and Theorem 5 together imply the appealing hierarchy

vor(x) ⊂ lunar(x) ⊂ dvor(x) ⊂ clover(x)

for any terminal node x. A simple counterexample demonstrates that no inclusion of the form

clover(x) ⊂ α · vor(x)

holds universally for fixed α > 2, where α · vor(x) denotes a dilation of vor(x) by a facor of α about x (so

dvor(x) = 2 · vor(x)). The construction of such a counterexample is shown in Figure 6. In the figures, one

terminal point q is moved closer and closer to another terminal point p. As q moves closer to p, the face

of the Voronoi cell separating p and q moves closer to p, while the circumspheres that make up clover(p)

converge to nonzero radii. It follows that for any α > 2 it is possible to move q close enough to p to ensure

that clover(p) is not contained in α · vor(p). The figures on the right side in Figure 6 include the quadruple

Voronoi region 4 · vor(p) for illustrative purposes.

3 Geometric conditions for SMTs with a FST

Clover regions, doubled Voronoi cells, and lunar regions provide increasingly sharp restrictions on the

location of a Steiner point connected to a given terminal node in a SMT. When a SMT has a FST, the fact

that every terminal is a leaf in the tree allows the feasible locations of Steiner points to be further restricted.

A simple edge exchange argument proves the following result.

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 6: The clover region is not contained in any fixed multiple of the Voronoi region

11

Lemma 6. In an SMT with a FST, an edge between a terminal point xi and a Steiner point in a SMT is

of length at most di, where di is the distance from xi to the nearest other terminal point.

For di as in Lemma 6, we refer to Bdi(xi) as the “smallest sphere” about xi. Note that Bdi(xi) ⊂
lunar(xi), and Lemma 6 immediately implies that in a SMT with a FST, two terminals xi and xj may be

connected to a common Steiner point only if

||xi − xj || ≤ di + dj =
√

d2
i + d2

j + 2didj .

We next strengthen this condition by incorporating the angle condition.

Lemma 7. Consider terminals xi and xj with smallest spheres of radii di and dj, respectively. Then in a

SMT with a FST, xi and xj may be connected to a common Steiner point only if

||xi − xj || ≤
√

d2
i + d2

j + didj .

Proof. Suppose that xi and xj are two terminals connected to a common Steiner point s, and let θ = ∠xisxj .

By the law of cosines

||xi − xj ||2 = ||xi − s||2 + ||s − xj ||2 − 2||xi − s|| · ||s − xj || cos θ

= ||xi − s||2 + ||s − xj ||2 + ||xi − s|| · ||s − xj ||,

since θ = 120◦ for a SMT. The proof is completed using ||xi − s|| ≤ di, ||xj − s|| ≤ dj , from Lemma 6.

To extend Lemma 7 to paths between terminals that include more than one Steiner point, we need an

upper bound on the lengths of edges between Steiner points. For terminals xi and xj in X , let bij denote

the length of the longest edge on the unique path between xi and xj in a minimum length spanning tree on

X (the bottleneck distance). The proof of the following lemma follows by a simple edge exchange argument.

Lemma 8. A SMT contains no edge of length greater than bij on the unique path between xi and xj.

Note that bij ≥ max{di, dj} for any terminals {xi, xj}. Let xi and xj be two terminals, with bottleneck

distance bij and smallest spheres of radii di and dj , respectively. We conclude from Lemmas 6 and 8 that xi

and xj may be connected by two or fewer Steiner points only if

||xi − xj || ≤ di + dj + bij .

Once again, we strengthen this condition by applying the angle condition.

Lemma 9. Consider terminals xi and xj with bottleneck distance bij and smallest spheres of radii di and

dj, respectively. Then in a SMT with a FST, xi and xj may be connected by a path having two or fewer

Steiner points only if

||xi − xj || ≤
√

(di + dj)2 + b2
ij + (di + dj)bij .

12

Proof. Consider a path connecting xi and xj of the form (xi, s1, s2, xj), where the edges obey the angle

condition and length restrictions in Lemmas 6 and 8. Note that increasing the length of any edge only

increases the inter-terminal distance, so without loss of generality, assume all edge lengths are at their upper

bounds.

Figure 7: The configuration with two Steiner points that maximizes the inter-terminal distance

Let (xi, s1, s2, x̃j) denote the configuration where the last point has been rotated into the plane defined

by the first three points. There are two choices for such a point x̃j that satisfy the angle condition, and we

take x̃j to be on the opposite side of the edge connecting s1 and s2) from xi; see Figure 7. Since bij ≥ di

and bij ≥ dj , the line segment between xi and x̃j must intersect the edge connecting s1 and s2. Let m be

this point of intersection. Then

||xi − x̃j || = ||xi − m|| + ||m − x̃j ||
= ||xi − m|| + ||m − xj ||
≥ ||xi − xj ||,

where the second equality follows since x̃j and xj are the same distance from any point on the line between

s1 and s2. We have therefore shown that moving from the original configuration (xi, s1, s2, xj) to the

planar configuration (xi, s1, s2, x̃j) does not decrease the inter-terminal distance. The maximal inter-terminal

distance of the planar configuration is then easily found since alternating edges in the path between xi and

x̃j are parallel. Translating the edge connecting s2 and x̃j to be co-linear with the edge connecting x1 and

s1 and applying the law of cosines with θ = 120◦, as in the proof of Lemma 7, obtains

||xi − xj || ≤ ||xi − x̃j || ≤
√

(di + dj)2 + b2
ij + (di + dj)bij .

It is natural to conjecture an extension of Lemmas 7 and 9 to paths between terminals involving more

than two Steiner points, but we have been unable to prove this conjecture. (The main difficulty is extending

the step in the proof of Lemma 9 that obtains a planar configuration without decreasing the inter-termianl

distance.) However, for the problem sizes considered in the next section, the extension to paths containing

more than 2 Steiner points rarely applies even if correct.

13

Figure 8: The distribution of the minimum number of Steiner points connecting pairs of terminals

For a set of terminal nodes X with |X | = N , Lemmas 6 and 9 can be used to create an N × N matrix

D where each off-diagonal entry dij gives the minimum number of Steiner points k ∈ {1, 2, 3} on the path

from xi to xj in a SMT with a FST. In Figure 8 we give the distibutions for the values of the off-diagonal

entries in the D matrices corresponding to N = 10, 15, 20 and 25 terminals randomly distributed in a unit

cube in �3. The shift in the distributions as N increases is apparent; note that for N = 25 almost 50% of

terminal pairs {xi, xj} require at least 3 Steiner nodes on the path connecting them.

4 Implementing geometric criteria to compute SMTs

In this section we describe an enhancement of Smith’s algorithm for solving the Euclidean Steiner tree

problem in �d, d ≥ 2 that incorporates the geometric restrictions described in section 3. For a set of terminal

nodes X we compute the matrix D described at the end of the section in a pre-processing step.

Recall that Smith’s algorithm uses an implicit enumeration scheme where nodes in the enumeration tree

correspond to FSTs on a subset of the N terminal nodes. We tabulate the deficit for such a partial FST as

follows. If two terminals xi and xj are connected by a path having sij Steiner points and sij < dij , we define

the deficit for this path to be mij = dij − sij , otherwise the deficit is zero. Note that by construction, if a

path has a deficit of mij > 0, then at least mij merges on this path will be required to satisfy the condition

for the required number of Steiner points on the path connecting xi and xj in a SMT. (Using the restrictions

derived in the previous section, if a path has a positive deficit then the possible values of the deficit are 1

and 2.) Note further that the deficit tabulation is additive over disjoint paths: if the paths between pairs

of terminals {xi, xj} and {xk, xl} are disjoint, and require mij and mkl additional merges respectively, then

14

a total of at least mij + mkl merges are required to satisfy the requirements for the minimum number of

Steiner nodes on the two paths.

For a given FST on a subset of n > 3 of the terminal nodes, we perform a greedy set-packing of disjoint

paths in an attempt to maximize the total deficit. We first choose all paths between pairs {xi, xj} having

sij = 1 and a positive deficit. (Note that for n > 3, paths between terminals with sij = 1 in a FST are all

disjoint from one another.) We then greedily pack any additional disjoint paths with sij = 2 that have a

deficit of 1 (it is not possible for a path with sij = 2 to have a deficit of 2 since the largest possible required

number of Steiner points is dij = 3). Let M denote the sum of the deficits over all of the chosen paths.

If M > N − n, the number of merges remaining, this topology and all of its descendants may be removed

from consideration, with no need to compute its minimal length. We incorporate this new fathoming by

geometry criterion in an implementation of Smith’s algorithm in an attempt to improve its performance.

When processing a node in the enumeration tree, we check if the partial FST can be fathomed by geometry

before computing the minimal length of a tree with the given topology.

In reporting statistics below, we use “Nodes” to refer to the number partial FSTs in the enumeration

tree which are not fathomed based on their parent’s minimal length or geometric conditions. Each such node

requires the solution of a second-order cone optimization problem using MOSEK (Andersen and Andersen,

2010) to optimize the location of Steiner points and determine the minimal length of a tree with the given

topology. We use “Time” to denote the CPU seconds taken to solve an instance. All values reported in

tables are averages taken over the number of instances solved. We consider two sets of problem instances.

The problems from Fampa and Anstreicher (2008) are randomized instances in the hypercube [0, 10]d with

N = 10 terminals in dimensions d = 3, 4, 5. There are 10 problems with d = 3, and 5 each for d = 4 and

5. For d = 3 we also created additional random instances with N = 12, 14, 16. There are 10 problems

for N = 12 and 14, and 5 for N = 16. All computations were performed using a modified version of the

C implementation of Smith’s algorithm written by Marcia Fampa, running under Linux on a 3.2 GHz dual

core Pentium with 2 GB of RAM.

The Smith+ algorithm of Fampa and Anstreicher (2008) utilizes a “strong branching” scheme to vary the

order in which terminals are merged to the existing partial FST. For each node in the enumeration tree, the

next terminal merged is chosen in such a way that the maximum number of children are eliminated, and/or

the child bounds are increased as rapidly as possible. The strong branching scheme attempts to minimize the

number of nodes processed in the implicit enumeration, but is expensive to implement due to the additional

computations required to decide the next terminal to merge. As an alternative to strong branching, we

sorted the terminal nodes in an attempt to accelerate fathoming without the computational effort associated

with a sophisticated branching scheme. We sort the terminals via distance from their centroid, with the first

terminal being the farthest away and the final terminal being the closest. The hope is that by first adding

terminals that are “far apart” the length of the tree will grow more rapidly.

In Table 1 we compare the performance of the Smith+ algorithm to our implementation of Smith’s

15

algorithm with sorting of the terminal nodes, using the instances from Fampa and Anstreicher (2008). For

both algorithms, the “Nodes Factor” and “Time Factor” give the improvement in the average Nodes and

Time compared to an implementation of Smith’s algorithm that simply adds the terminal nodes in the

order in which they appear in the input file (the factors for the Smith+ algorithm are taken from the

Fampa and Anstreicher (2008)). As expected, the more sophisticated strong branching scheme reduces the

nodes processed by a much larger factor, but the factors for time reduction obtained by the two approaches

are comparable. We conclude that sorting the terminals is an economical way to reduce both nodes and

computational time, and utilize the centroid sorting procedure for all remaining computations.

Table 1: The effect of sorting terminals on instances in �d

Smith Smith w/sorting Smith+
Problems Nodes Time Nodes Time Nodes Time Nodes Time
N d Factor Factor Factor Factor
10 3 139,971 248.6 39,571 69.9 3.5 3.6 50.7 4.8
10 4 368,763 766.5 60,489 120.1 6.1 6.4 26.9 2.8
10 5 470,322 1,116.0 128,485 296.3 3.7 3.8 50.8 4.4

We next consider the effect of adding fathoming by geometry. As Table 2 demonstrates, geometric

conditions have a significant impact on fathoming of nodes and decreasing computation time. The factors

for nodes and time in Table 2 are relative to Smith’s algorithm with sorting of the terminals. The two

improvement factors are approximately equal due to the minor computational effort in checking geometric

criteria and performing all other work compared to solving second-order cone optimization problems using

MOSEK. (The instances in �5, for example, averaged 167.0 CPU seconds per instance with 165.9 seconds

consumed by MOSEK.) Information for individual problems is given in Figures 9 and 10. In both figures

the x-axis gives the number of nodes required by the Smith algorithm with sorting (on a logarithmic scale)

and the y-axis gives the factor improvement in the number of nodes when fathoming by geometry is added2.

Note that there is one problem with d = 3, N = 10 where adding fathoming by geometry increases the

number of nodes required by the algorithm. This is possible due to the effect of obtaining an improved

upper bound earlier in the enumeration process: a node that is fathomed by geometry might lead to an

improved but nonoptimal Steiner tree that permits fathoming of other nodes encountered before the SMT

is found. There is clearly a large variation in the number of nodes required to solve problems with a given d

and N . Figure 9 shows that for the problems with N = 10, the improvement from adding geometry tends to

be larger for more difficult problems. This trend is also apparent for the problems with d = 3 in Figure 10,

up to those requiring approximately 1 million nodes. Beyond this level of difficulty, however, the marginal

effect of adding fathoming by geometry appears to diminish. We conclude that adding geometric criteria

to Smith’s algorithm provides significant improvements, but stronger geometric restrictions are required to

obtain the same degree of improvement on more difficult problems.
2Two instances with N = 12, d = 3 have almost identical coordinates in Figure 10 and appear as a single point.

16

Table 2: The effect of geometric conditions on instances in �d

Smith w/sorting Smith w/sorting & geometry
Problems Nodes Time Nodes Time Nodes Time
N d Factor Factor
10 3 39,571 69.9 22,766 40.2 1.7 1.7
10 4 60,489 120.1 44,858 89.9 1.3 1.3
10 5 128,485 296.3 72,850 167.0 1.8 1.8
12 3 323,829 613.3 191,319 362.7 1.7 1.7
14 3 3,053,659 6,239.0 2,284,117 4,681.0 1.3 1.3
16 3 21,114,698 48,350.0 15,849,345 36,200.0 1.3 1.3

0

0.5

1

1.5

2

2.5

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Smith Scheme- Nodes Processed

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

d=3

d=4

d=5

Figure 9: Effect of adding geometry to problems with N = 10

0

0.5

1

1.5

2

2.5

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Smith Scheme- Nodes Processed

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

N=10
N=12
N=14
N=16

Figure 10: Effect of adding geometry to problems with d = 3

17

There are several ways in which the performance of Smith’s algorithm might be further improved. We

first describe two possiblities that we have investigated.

• For the computational results reported here, the algorithm is initialized with an upper bound of +∞,

so no fathoming is possible until an initial Steiner tree on all terminal nodes is found by the algorithm.

The performance of the algorithm can be improved by running a heuristic that obtains an initial,

hopefully near-optimal solution. We investigated the effect of having an initial upper bound (IUB)

by using the heuristic from Van Laarhoven and Ohlmann (2010) to obtain a good initial solution.

Using an IUB improves the performance of the algorithm with and without the use of fathoming by

geometry. Compared to the algorithm with sorting of the terminals, but without an IUB, adding

both fathoming by geometry and an IUB results in improvement factors for nodes and time in the

range [1.4, 2.2], compared to [1.3, 1.8] as reported in Table 2. (The use of an IUB also eliminates the

single instance where fathoming by geometry increased the number of nodes.) When using an IUB,

the marginal improvement factors obtained by adding fathoming by geometry are very close to those

reported without the use of an IUB in Table 2.

• As described in section 3, it is natural to conjecture that the results of Lemmas 7 and 9 extend to paths

between terminals involving more than two Steiner points. To examine the effect of such an extension,

we assumed the result was true and considered the possibility of obtaining off-diagonal entries of the

matrix D great than 3. For the test problems used here, no instances with N = 10 or 12 obtain any

values dij > 3, and a small number of such entries appear in problems with N = 14 and 16. When

these latter instances were re-run with the revised D matrices, the change in the number of nodes

required was very small.

Additional possibilites for improvements that remain topics for further research include the following.

• In attempting to fathom by geometry, we currently use a greedy procedure to pack disjoint paths

having a positive deficit in an attempt to maximize the total deficit for a FST on a subset of the

terminal nodes. A more sophisticated packing procedure could obtain a higher total deficit, leading

to more fathoming. The use of a more sophisticated procedure could be especially beneficial if there

were longer paths with positive deficits, as would result for N sufficiently large from the extension of

Lemmas 7 and 9 to paths with more than two Steiner nodes mentioned above.

• In addition to fathoming, the geometric conditions could be used to alter the branching process of

Smith’s algorithm. For example, consider a node at level k of Smith’s enumeration scheme, having a

FST on n = k + 3 terminals, where some path between a pair of terminals {xi, xj} connected to a

common Steiner point has a positive deficit. A merge must occur on one of the two edges in this path

if it is to lead to a SMT, so one could create children of this node by applying the merge operation

using each of the remaining terminals merged to each of the two edges, resulting in a total of 2(N −n)

18

children. The usual branching process for Smith’s enumeration scheme creates one child for each of

the 2n − 3 edges in the partial FST. It follows that if n > �N/2�, then fewer children are created by

the alternative branching scheme, and the difference between the two schemes increases with depth in

the enumeration tree.

Acknowledgement

We are grateful to Marcia Fampa for providing the C implementation of Smith’s algorithm on which our

computations are based.

References

E.D. Andersen and K.D. Andersen. The MOSEK optimization tools manual Version 6.0. 2010. URL
www.mosek.com.

S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric
problems. JACM, 45(5):753–782, 1998.

M. De Berg, O. Cheong, M Van Kreveld, and M. Overmars. Computational Geometry: Algorithms and
Applications. Springer-Verlag, 2008.

M. Fampa and K.M. Anstreicher. An improved algorithm for computing Steiner minimal trees in Euclidean
d-space. Discrete Optimization, 5:530–540, 2008.

M.R. Garey, R.L. Graham, and D.S. Johnson. The complexity of computing Steiner minimal trees. SIAM
J. Applied Mathematics, 32(4):835–859, 1977.

E.N. Gilbert and H.O. Pollak. Steiner minimal trees. SIAM J. Applied Mathematics, 16(1):1–29, 1968.

J.M. Smith and B. Toppur. Euclidean Steiner minimal trees, minimum energy configurations, and the
embedding problem of weighted graphs in E3. Discrete Applied Mathematics, 71:187–215, 1996.

W.D. Smith. How to find Steiner minimal trees in Euclidean d-space. Algorithmica, 7(1):137–177, 1992.

J.W. Van Laarhoven and J. Ohlmann. A randomized Delaunay triangulation heuristic for the Euclidean
Steiner tree problem in �d. J. Heuristics, to appear, 2010.

D.M. Warme, P. Winter, and M. Zachariasen. GeoSteiner 3.1., 2001. URL www.diku.dk/hjemmesider/
ansatte/martinz/geosteiner/.

P. Winter and M. Zachariasen. Euclidean Steiner minimum trees: An improved exact algorithm. Networks,
30(3):149–166, 1997.

19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

