
An Approach to the Dodecahedral Conjecture
Based on Bounds for Spherical Codes

Kurt M. Anstreicher

Abstract The dodecahedral conjecture states that in a packing of unit spheres in
ℜ3, the Voronoi cell of minimum possible volume is a regular dodecahedron with
inradius one. The conjecture was first stated by L. Fejes Tóth in 1943, and was
finally proved by Hales and McLaughlin over 50 years later using techniques devel-
oped by Hales for his proof of the Kepler conjecture. In 1964, Fejes Tóth described
an approach that would lead to a complete proof of the dodecahedral conjecture
if a key inequality were established. We describe a connection between the key in-
equality required to complete Fejes Tóth’s proof and bounds for spherical codes and
show how recently developed strengthened bounds for spherical codes may make it
possible to complete Fejes Tóth’s proof.
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1 Introduction

The dodecahedral conjecture states that in a packing of unit spheres in ℜ3, the
Voronoi (or Dirichlet) cell of minimum possible volume is a regular dodecahedron
with inradius one. More precisely, let x̄i, i = 1, . . . ,m be points in ℜ3 with ‖x̄i‖ ≥ 1
for each i, and ‖x̄i− x̄ j‖ ≥ 1 for all i 6= j. Then the points 2x̄i can be taken to be
the centers of m non-overlapping spheres of radius one which also do not overlap a
sphere of radius one centered at x0 = 0. The Voronoi cell associated with x0 is then

V (x̄1, . . . , x̄m) = {x : x̄T
i x≤ ‖x̄i‖2, i = 1, . . . ,m}.
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Let D ⊂ℜ3 denote a regular dodecahedron of inradius one, and Vol(·) denote vol-
ume in ℜ3.
The Dodecahedral Conjecture [5, 6] Let x̄i ∈ ℜ3, i = 1, . . . ,m with ‖x̄i‖ ≥ 1 for
each i, and ‖x̄i− x̄ j‖ ≥ 1 for all i 6= j. Then Vol(V (x̄1, . . . , x̄m))≥ Vol(D).

The dodecahedral conjecture was stated by L. Fejes Tóth in 1943 [5]. Fejes
Tóth’s interest in the conjecture was to obtain a good upper bound on the maxi-
mal density of a sphere packing in ℜ3. In particular, the dodecahedral conjecture
implies an upper bound of approximately .7545, compared to the maximal density
of approximately .7405 asserted by the Kepler conjecture. Hales and McLaughlin
[9] describe a complete proof of the dodecahedral conjecture based on techniques
developed by Hales for his proof of the Kepler conjecture. The proof of [9] is be-
lieved to be correct, but is difficult to verify due to the many cases and extensive
computations required.

Let RD =
√

3tan36◦ ≈ 1.2584 be the radius of a sphere that circumscribes D,
and let SD = {x ∈ℜ3 :‖x‖ ≤ RD}. Fejes Tóth’s 1943 paper contains a proof of the
dodecahedral conjecture under the assumption that there are at most twelve i such
that x̄i ∈SD. In [6, pp.296-298] Fejes Tóth restates the dodecahedral conjecture and
describes an approach that would lead to a complete proof if a key inequality were
established. The details of this approach are described in the next section. In section
3 we describe a connection between the key inequality required to complete Fejes
Tóth’s proof and bounds for spherical codes. Using constraints from the the well-
known Delsarte bound for spherical codes, we are able to prove the key inequality
for some but not all of the required possible cases. We then consider applying addi-
tional constraints from recently described semidefinite programming (SDP) bounds
for spherical codes [2]. The use of the SDP constraints improves our bounds, but is
not sufficient to eliminate more cases than were already eliminated using the linear
programming constraints associated with the Delsarte bound.

In recent work, Hales [7] announced a proof of the “strong” dodecahedral con-
jecture, which is the original dodecahedral conjecture with surface area replacing
volume throughout. The proof methodology of [7] also utilizes Fejes Tóth’s key in-
equality, which is apparently the basis for a new computational proof of the Kepler
conjecture in [8]. These recent developments suggest that continued efforts to pro-
vide a direct proof of the key inequality remain a very interesting topic for further
research.

2 Fejes Tóth’s Proof

In this section we describe the proof of the dodecahedral conjecture suggested in
[6]. The first ingredient is a strengthened version of the result proved in [5].

Theorem 1. [6, p.265] Let x̂i, i = 1, . . . ,m be points in ℜ3 with ‖x̂i‖ ≥ 1 for each i.
If m≤ 12, then Vol(V (x̂1, . . . , x̂m)∩SD)≥ Vol(D).
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Note that in Theorem 1 it is not assumed that the points satisfy ‖x̂i− x̂ j‖ ≥ 1, i 6=
j. Also, the assumption that ‖x̂i‖< RD for each i could be added, since if ‖x̂i‖ ≥ RD
the constraint x̂T

i x ≤ ‖x̂i‖2 in the definition of V (x̂1, . . . , x̂m) does not eliminate any
points in SD.

The second important component of the argument suggested in [6] is a “point
adjustment procedure” that facilitates the use of Theorem 1 when m > 12. For the
Voronoi cell V (x̂1, . . . , x̂m), let Fi(x̂1, . . . , x̂m) be the face of V (x̂1, . . . , x̂m)∩SD cor-
responding to the points with x̂T

i x = ‖x̂i‖2 (it is possible that Fi(x̂1, . . . , x̂m) = /0).

Point Adjustment Procedure

Step 0. Input x̄i, 1≤ ‖x̄i‖ ≤ RD, i = 1, . . . ,m with m > 12 and ‖x̄i− x̄ j‖ ≥ 1, i 6= j.
Let x̂i = x̄i, i = 1, . . . ,m.

Step 1. If |{i :1 < ‖x̂i‖< RD}|< 2 then go to Step 3. Otherwise choose j 6= k such
that 1 < ‖x̂ j‖< RD, 1 < ‖x̂k‖< RD, and the surface area of Fj(x̂1, . . . , x̂m)
is less than or equal to that of Fk(x̂1, . . . , x̂m).

Step 2. Let δ = min{RD−‖x̂ j‖,‖x̂k‖−1}, and

x̂ j← (‖x̂ j‖+δ )
x̂ j

‖x̂ j‖
, x̂k← (‖x̂k‖−δ )

x̂k

‖x̂k‖
.

Go to Step 1.
Step 3. Output x̂i, i = 1, . . . ,m.

As pointed out in [6], RD <
√

2 implies that the area of Fi(λ1x1, . . . ,λmxm) is
monotone decreasing in λi. It follows that the adjustment in Step 2 leaves ∑

m
i=1 ‖x̂i‖

unchanged, while Vol(V (x̂1, . . . , x̂m)∩SD) is nonincreasing1. Note that the adjust-
ment in Step 2 is executed at most m− 1 times, since each adjustment decreases
|{i :1 < ‖x̂i‖ < RD}| by at least 1. Then Theorem 1 can be applied if the x̂i output
by the procedure have at most twelve i with ‖x̂i‖< RD. (Note that the output points
x̂i will generally not satisfy ‖x̂i− x̂ j‖ ≥ 1, i 6= j, but this assumption is not required
in Theorem 1.) This will be the case if the input points x̄i satisfy

m

∑
i=1
‖x̄i‖ ≥ 12+(m−12)RD. (1)

To see this, note that there is at most one x̂ j with 1 < ‖x̂ j‖< RD, so if |i :‖x̂i‖= 1| ≤
11 there is nothing to show. Assume on the other hand that ‖x̂i‖ = 1, i = 1, . . . ,12.
Then (1) and the fact that ‖x̂i‖ ≤ RD for each i together imply

m

∑
i=1
‖x̂i‖ =

m

∑
i=1
‖x̄i‖ ≥ 12+(m−12)RD

12+
m

∑
i=13
‖x̂i‖ ≥ 12+(m−12)RD

1 Fejes Tóth does not explicitly consider the possibility that the two faces Fj(x̂1, . . . , x̂m) and
Fk(x̂1, . . . , x̂m) intersect. However in this case it is easy to see that the increase in volume that
results from increasing x̂ j is even less than if the faces do not intersect.
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(m−12)RD ≥
m

∑
i=13
‖x̂i‖ ≥ (m−12)RD,

implying that ‖x̂i‖= RD for i = 13, . . . ,m.
A complete proof of the dodecahedral conjecture thus requires only a proof that

(1) holds for any x̄i, i = 1, . . . ,m with 1 ≤ ‖x̄i‖ ≤ RD for each i, and ‖xi− x j‖ ≥ 1
for all i 6= j. Unfortunately Fejes Tóth was unable to prove (1), even though all
evidence suggests that (1) actually holds with RD replaced by the larger constant
7/
√

27 ≈ 1.347 [6] 2. Remarkably, the key inequality also appears in Hales’ [7]
recent paper that describes a proof of the strong dodecahedral conjecture. In [7]
the key inequality is labeled as the inequality L12, and is written with the value of
RD ≈ 1.2584 rounded up to h0 := 1.26. (It is also assumed that the initial points
satisfy 1≤ ‖x̄i‖ ≤ h0.) A computational proof of the inequality L12 is apparently the
basis for a new proof of the Kepler conjecture in [8].

3 Applying Bounds for Spherical Codes

We now describe an approach to proving the key inequality (1) based on bounds for
spherical codes. A set C = {xi}m

i=1 ⊂ℜ3 is called a spherical z-code if ‖xi‖= 1 for
each i, and xT

i x j ≤ z for all i 6= j. For example, a packing of unit spheres that all
touch (or “kiss”) a unit sphere centered at the origin generates a spherical 1/2-code.

To begin we establish that if R is sufficiently small and {x̄i}m
i=1 are points with

1 ≤ ‖x̄i‖ ≤ R for each i and ‖x̄i− x̄ j‖ ≥ 1 for all i 6= j, then the normalized points
xi = x̄/‖x̄i‖ form a z-code for a suitable value of z.

Lemma 1. Suppose that 1≤ ‖x̄i‖ ≤ R, i = 1, . . . ,m, where 1≤ R≤ 1+
√

5
2 and ‖x̄i−

x̄ j‖ ≥ 1 for all i 6= j. Let xi = x̄i/‖x̄i‖, i = 1, . . . ,m. Then xT
i x j ≤ 1− 1

2R2 for all i 6= j.

Proof. The case R = 1 is trivial. For R > 1 and i 6= j, consider the problem

max ‖λixi−λ jx j‖2 (2)
s.t. 1≤ λi ≤ R, 1≤ λ j ≤ R.

The objective in (2) is convex, so the solution lies at an extreme point of the feasible
region. Letting s := xT

i x j, the value of the objective at the extreme points is:

λ
2
i +λ

2
j −2sλiλ j =


2(1− s) if λi = λ j = 1,
1+R2−2Rs if λi = 1, λ j = R or λi = R, λ j = 1,
2R2(1− s) if λi = λ j = R.

2 Note that (1) implies that for m = 13, if ‖x̄i‖ = 1 for i = 1, . . . ,12, then ‖x̄13‖ ≥ RD. It has been
incorrectly stated that the latter implication is the “missing ingredient” in Fejes Tóth’s proof. In
fact the stronger statement (1) is exactly what is required.
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Obviously the maximum cannot occur at λi = λ j = 1. Note that the solution value in
(2) is at least one, from the assumption that ‖x̄i− x̄ j‖ ≥ 1. It follows that if the max
occurs at λi = 1, λ j = R (or equivalently λi = R, λ j = 1) then 1+R2− 2Rs ≥ 1,
which is equivalent to s ≤ R

2 . Similarly, if the max occurs at λi = λ j = R, then
2R2(1− s) ≥ 1, which is equivalent to s ≤ 1− 1

2R2 . Finally it is easy to verify that
R
2 ≤ 1− 1

2R2 for 1≤ R≤ 1+
√

5
2 . ut

Next, for xi 6= x j with ‖xi‖= ‖x j‖= 1, consider the problem

min λi +λ j

s.t. ‖λixi−λ jx j‖ ≥ 1 (3)
1≤ λi ≤ R, 1≤ λ j ≤ R.

Note that by Lemma 1 and its proof, if R ≤ 1+
√

5
2 then (3) is feasible if and only

if xT
i x j ≤ 1− 1

2R2 . The next result gives a complete characterization of the solution
value in (3).

Theorem 2. Let 1 ≤ R ≤ 1+
√

5
2 , ‖xi‖ = ‖x j‖ = 1 and s = xT

i x j ≤ 1− 1
2R2 . Then the

solution value in problem (3) is λ ∗i +λ ∗j = f (s,R), where

f (s,R) =


2 if s≤ 1

2 ,
1+2s if 1

2 ≤ s≤ R
2 ,

R(1+ s)+
√

1−R2(1− s2) if R
2 ≤ s≤ 1− 1

2R2 .

Proof. The case of s ≤ .5 is trivial, so assume that s > .5 and the objective in (3)
attains a value λ1+λ2 = c, where 2 < c≤ 2R. Since the constraint ‖λixi−λ jx j‖≥ 1
is equivalent to (λi +λ j)

2 ≥ 1+2λiλ j(1+ s), this implies that we must have

c2 ≥ 1+2(1+ s)λiλ j .

To find the minimum possible value of c we are thus led to consider the problem

min λiλ j

s.t. λi +λ j = c, (4)
1≤ λi ≤ R, 1≤ λi ≤ R.

The objective in (4) can be written in the form λi(c−λi), which is a concave func-
tion, so the solution of (4) must occur at an extreme point of the feasible region.
There are two possibilities for the form of such an extreme point, depending on the
value of c.
Case 1: c ≤ 1 + R. In this case the extreme points of (4) have (λi,λ j) equal to
(1,c− 1) and (c− 1,1), both of which have λiλ j = c− 1. To find the minimum
possible value of c = λi +λ j in (3), we must find the minimum c≥ 2 such that

c2 ≥ 1+2(1+ s)(c−1),
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which is easily determined to be c = 1+ 2s. Since by assumption c ≤ 1+R, this
solution applies whenever 1+2s≤ 1+R, or s≤ R

2 .
Case 2: c ≥ 1 + R. In this case the extreme points of (4) have (λi,λ j) equal to
(R,c−R) and (c−R,R), both of which have λiλ j = R(c−R). To find the minimum
possible value of c = λi +λ j in (3), we must find the minimum c≥ 2 such that

c2 ≥ 1+2(1+ s)R(c−R),

which is easily determined to be c = R(1+ s)+
√

1−R2(1− s2). Since by assump-
tion c≥ 1+R, this solution applies whenever R(1+ s)+

√
1−R2(1− s2)≥ 1+R,

which is equivalent to s≥ R
2 . ut

In Figure 1 we plot f (s,RD) for 1
2 ≤ s ≤ 1− 1

2R2
D

. It is evident from the figure,

and is easy to prove, that f (s,RD) is concave in the interval RD
2 ≤ s≤ 1− 1

2R2
D

.

2.0

2.1

2.2

2.3

2.4

2.5

2.6

0.5 0.55 0.6 0.65 0.7
s

Fig. 1 Function f (s,RD) from Theorem 2

Now assume that m > 12, 1 ≤ ‖x̄i‖ ≤ RD, i = 1, . . .m, and ‖x̄i− x̄ j‖ ≥ 1 for all
i 6= j. Let λi = ‖x̄i‖ and xi = (1/λi)x̄i, i = 1, . . . ,m. Our goal is to prove (1), which
can be written as

m

∑
i=1

λi ≥ 12+(m−12)RD. (5)

Define Ni = |{ j 6= i :xT
i x j ≥ .5}| to be the number of “close neighbors” of xi, i =

1, . . . ,m and N = {(i, j), i 6= j :xT
i x j ≥ .5}. Note that (i, j) ∈N ⇐⇒ ( j, i) ∈N ,

and |N |= ∑
m
i=1 Ni. Moreover we have
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∑
(i, j)∈N

(λi +λ j−2) = ∑
(i, j)∈N

(λi−1)+(λ j−1) = 2
m

∑
i=1

Ni(λi−1).

Applying Theorem 2, it follows that

2
m

∑
i=1

Ni(λi−1) ≥ ∑
(i, j)∈N

[ f (xT
i x j,RD)−2]

m

∑
i=1

(λi−1) ≥ 1
2Nmax

∑
(i, j)∈N

[ f (xT
i x j,RD)−2],

where Nmax := max{Ni}m
i=1. Thus to prove (5) it suffices to show that

1
2Nmax

∑
(i, j)∈N

[ f (xT
i x j,RD)−2]≥ 12+(m−12)RD−m = (m−12)(RD−1). (6)

To bound Nmax we utilize the following result, which is a slight generalization of
[1, Lemma 5].

Proposition 1. Suppose that a spherical triangle with sides a,b,c has cosc ≤ zc,
0≤ za ≤ cosa≤ cosb≤ zb < 1, zc ≥ zazb. Let γ be the spherical angle between the
sides a and b. Then

cosγ ≤max

 zc− z2
a

1− z2
a
,

zc− zazb√
(1− z2

a)(1− z2
b)

 .

Lemma 2. Nmax ≤ 6. Moreover, for m = 13, if Nmax = 6 then (5) holds.

Proof. Applying Proposition 1 with za = .5, zb = zc = 1− 1/(2R2
D) ≈ .6843, we

obtain cosγ ≤ .5791, or γ ≥ 54.6◦. It follows immediately that Nmax ≤ 6, since
7(54.6◦) > 360◦. For m = 13, Theorem 2 implies that (5) immediately holds
if xT

i x j ≥ RD/2 for any i 6= j. Assume alternatively that xT
i x j ≤ RD/2 for all

i 6= j. Applying Proposition 1 with za = .5, zb = zc = RD/2 ≈ .6292, we obtain
cosγ ≤ .5056, or γ ≥ 59.6288◦. Hence Nmax = 6 is still possible, so assume that
Ni = 6 for some i. Reindexing the points {x j}13

j=1, we can assume that i = 7 and
the points {x j}6

j=1, have xT
j x( j MOD6)+1 ≤ RD/2, j = 1, . . . ,6. However, the fact that

γ ≥ 59.6288◦ in each spherical triangle with vertices x7,x j,x( j MOD6)+1 also implies
that γ ≤ 360◦−5(59.6288◦)= 61.856◦. Since Proposition 1 with za = .5, zb =RD/2,
zc = .6 obtains γ ≥ 62.18◦, we can conclude that xT

j x( j MOD6)+1 ≥ .6, j = 1, . . . ,6.
Applying Theorem 2, we conclude that λ j +λ j+1 ≥ 1+2(.6) = 2.2 for j = 1,3,5.
It follows that

13

∑
i=1

λi ≥ 7+3(2.2) = 13.6,

which implies (5). ut
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With an upper bound for Nmax determined, a lower bound for the left-hand side
of (6) can be obtained using the Delsarte bound for spherical codes. Specifically,
C = {xi}m

i=1 is a spherical z-code in ℜ3, with z = 1−1/(2R2
D) ≈ .6843. We define

the usual distance distribution of the code to be the function α(·) : [−1,1]→ ℜ+

defined as

α(s) =
|{(i, j) :xT

i x j = s}|
m

. (7)

It is then easy to see that α(·)≥ 0, and

∑
−1≤s≤z

α(s) = m−1. (8)

Let Φk(·), k = 0,1, . . . denote the Gegenbauer, or ultraspherical, polynomials
Φk(t) = P(0,0)

k (t) where P(s,s)
k is a Jacobi polynomial. It can be shown [4], [3, Chap-

ter 9, 13] that
1+ ∑

−1≤s≤z
α(s)Φk(s)≥ 0, k = 1,2, . . . . (9)

From (8) and (9), using k = 1, . . . ,d, a bound on the left-hand side of (6) can be
obtained via the semi-infinite linear programming problem

LP(m) : min ∑
.5≤s≤z

m[ f (s,RD)−2]α(s)

s.t. ∑
s∈Z

α(s)Φk(s)≥−1, k = 1, . . . ,d,

∑
s∈Z

α(s) = m−1, α(s)≥ 0, s ∈ Z,

where Z := [−1,z]. For z = 1− 1/(2R2
D) the constraints of LP are feasible up to

m = 21. (In other words, 21 is the Delsarte bound for the size of this spherical z-
code. The maximum cardinality of a z-code for this value of z actually appears to be
20 [10].) Let v∗LP(m) denote the solution value in LP(m). We obtain an approximate
value of v∗LP(m) for m = 13, . . . ,21 by numerically solving a discretized version of
LP(m) using d = 16, and values of s ∈ Z incremented by .0023. In Figure 2 we
plot the lower bound v∗LP(m)/(2Nmax) for the left-hand side of (6) (using Nmax = 6,
except Nmax = 5 for m = 13) and the required value (m−1)(RD−1) from the right-
hand side of (6). The lower bound based on v∗LP(m) is sufficient to prove that (5)
holds for m≥ 174. The value v∗LP(13) = 0 is a consequence of the well-known fact
that the Delsarte bound for a 1/2-code in ℜ3 is 13, despite the fact that the actual

3 A rigorous lower bound for each v∗LP(m) can be obtained by solving the dual of the discretized
problem and adjusting the dual solution to account for the discretization of s [3]. Alternatively a
sum-of-squares formulation for the dual of LP(m) could be used to solve the dual problem exactly.
4 A referee has indicated that geometric arguments due to Marchal should also be able to establish
that (5) holds for these cases, and possibly m = 16.
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maximal size of such a code is 12. Indeed, this observation means that the approach
based on LP(m) has no chance of establishing (5) for m = 13.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

12 13 14 15 16 17 18 19 20 21
Number of Points m

Bound from
LP(m)

Required
Value

Fig. 2 LP bounds for inequality (6)

To prove (5) for 13 ≤ m ≤ 16 requires stronger restrictions on the distance dis-
tribution than the constraints (9). The most attractive possibility appears to be the
strengthened semidefinite programming constraints from [2]. In particular the con-
straints in [2] are sufficient to prove that the maximum cardinality of a 1/2-code in
ℜ3 is 12, which is essential if one is to have any chance of proving (6) for m = 13.
Applying the methodology of [2] results in a problem SDP(m) of the form

SDP(m) : min ∑
.5≤s≤z

m[ f (s,RD)−2]α(s)

s.t. 3 ∑
s∈Z

α(s)Sk(s,s,1)+ ∑
s,t,u∈Z

α
′(s, t,u)Sk(s, t,u)�−Sk(1,1,1),

∑
s∈Z

α(s)Φk(s)≥−1, k = 1, . . . ,d

∑
s∈Z

α(s) = m−1, α(s)≥ 0, s ∈ Z

∑
s,t,u∈Z

α
′(s, t,u) = (m−1)(m−2), α

′(s, t,u)≥ 0, s, t,u ∈ Z.

In SDP(m), α ′(·, ·, ·) is the 3-point distance distribution

α
′(s, t,u) =

|{(i, j,k) :xT
i x j = s,xT

i xk = t,xT
j xk = u}|

m
,
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and Sk(s, t,u) is a (d + 1− k)× (d + 1− k) symmetric matrix whose entries are
symmetric polynomials of degree k in the variables (s, t,u); see [2] for details. (The
notation X � Y means that X −Y is positive semidefinite.) In Figure 3 we show the
bounds v∗SDP(m)/(2Nmax) for the left-hand side of (6), as well as the required value
(m−1)(RD−1) from the right-hand side of (6), for 13≤ m≤ 165. For comparison
we also give the previously described bounds based on v∗LP(m). As can be seen
from the figure, the use of SDP(m) gives a substantial improvement over LP(m)
for m = 13, but the magnitude of the difference appears to diminish as m increases,
and the improved bound is unable to eliminate any more cases than were eliminated
using LP(m)6.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

12 13 14 15 16

Number of Points m

Bound from LP(m)
Bound from SDP(m)
Required Value

Fig. 3 LP and SDP bounds for inequality (6)

Although the use of SDP(m) is not sufficient to prove the key inequality (1) for all
required m, there are several possible ways in which the approach based on SDP(m)
might be strengthened. In particular, since SDP(m) uses the three-point distance dis-
tribution, it should be possible to utilize a more elaborate version of Theorem 2 to
give lower bounds on terms of the form λi +λ j +λk. In addition, since the elements
of the three-point distance distribution include the triangles in a Delaunay triangu-
lation of the surface of the sphere, it might be possible to add valid constraints that
can be derived for the Delaunay triangulation, as in [1]. The possibility that further
strengthening of SDP(m) might suffice to establish (1) remains a very interesting

5 The values of v∗SDP(m) are approximate, based on solving a discretization of SDP(m). It is pos-
sible to obtain rigorous bounds by applying a sum-of-squares formulation to the dual of SDP(m);
see [2]
6 As noted by a referee, it is possible that (6) is false even though (1) is true. We have not attempted
to find a counter-example to (6) for the unresolved cases 13≤ m≤ 16.
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topic for ongoing research, especially given the connection between (1) and the re-
cent work of Hales [7, 8] on the Kepler conjecture and related problems.
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