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In this paper, we consider an extension of ordinary linear programming (LP) that adds weighted logarithmic
barrier terms for some variables. The resulting problem generalizes both LP and the problem of finding
the weighted analytic centre of a polytope. We show that the problem has a dual of the same form and give
complexity results for several different interior-point algorithms. We obtain an improved complexity result
for certain cases by utilizing a combination of the volumetric and logarithmic barriers. As an application,
we consider the complexity of solving the Eisenberg–Gale formulation of a Fisher equilibrium problem
with linear utility functions.

Keywords: linear programming; weighted analytic centre; interior-point algorithm; Fisher equilibrium;
volumetric barrier

AMS Subject Classifications: 90C05; 90C25; 90C51

1. Introduction

In this paper, we consider an optimization problem of the form

(LPWC) min g(x) := cTx −
n∑

i=1

wi ln(xi)

s.t. Ax = b,

x ≥ 0,

where A is an m × n matrix with independent rows and w ≥ 0. The name of the problem is
chosen to suggest that LPWC is a natural generalization of two other well-known optimization
problems. The first, when w = 0, is ordinary linear programming (LP). The second, when c = 0
and w > 0, is the problem of computing the weighted analytic centre (WC) of the polyhedron
{x ≥ 0|Ax = b}. Complexity results for the latter problem were given by Atkinson and Vaidya [2]
and Freund [5] and are described in more detail below. A novel application of the weighted centre
problem is given in [3].
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2 K.M. Anstreicher

Terlaky and Vial [8] showed how primal and primal–dual interior-point algorithms can be
adapted to solve problems of the form LPWC that arise from statistical estimations. Terlaky and
Vial [8] reported computational results, but did not provide any theoretical complexity analysis.
Ye [12,13] described an instance of LPWC corresponding to the Eisenberg–Gale formulation of
a Fisher equilibrium problem with linear utility functions. In this application, c = 0, but some
components of w are zero, so the results of Atkinson and Vaidya [2] and Freund [5], who assumed
that w > 0, do not apply. Ye showed that a modification of the well-known primal–dual path-
following algorithm for LP can be used to solve LPWC with essentially the same complexity as
in the LP case.

In Section 2, we show that LPWC has a natural dual problem, DPWC, with a very similar form.
In Section 3, we describe how the complexity theory based on self-concordant functions and bar-
riers due to Nesterov and Nemirovskii [7] can be applied to solve the problems LPWC/DPWC.
The complexity results obtained are consistent with those reported by Freund [5] and Ye [13]. We
then consider the situation where both m and the number of logarithmic barrier terms |{i|wi > 0}|
are much smaller than n, which occurred in the application ofYe [12,13]. For this case, we obtain a
lower iteration complexity for DPWC by utilizing a combination of the volumetric and logarithmic
barriers. In Section 4, we apply this result to the Fisher equilibrium problem.
Notation. For vectors x ∈ �n, s ∈ �n, x ◦ s denotes the Hadamard product (x ◦ s)i = xisi , i =
1, . . . , n, and Diag(s) is the diagonal matrix with Diag(s)ii = si , i = 1, . . . , n. We use e to denote
a vector with each component equal to one. For a square matrix X, ldetX = ln det X.

2. The dual problem

We begin by defining a dual problem for LPWC,

(DPWC) max h(y) := γ (w) + bTy +
n∑

i=1

wi ln(ci − aT
i y)

s.t. ATy ≤ c,

where ai is the ith column of A and γ (w) := eTw − ∑n
i=1 wi ln(wi). We use DP to refer to an

instance of DPWC with w = 0. The relationship between LPWC and DPWC is summarized in
the following theorem. Let P = {i|wi > 0}. We call x a strictly feasible solution for LPWC if x

is feasible for the constraints of LPWC and xi > 0, i ∈ P; similarly, we call y strictly feasible
for DPWC if s = c − ATy ≥ 0 and si > 0, i ∈ P .

Theorem 2.1 Assume that x is strictly feasible for LPWC and y is strictly feasible for
DPWC. Then,

(1) (weak duality) h(y) ≤ g(x);
(2) (optimality conditions) x and y are optimal solutions of LPWC and DPWC, respectively, if

and only if x ◦ s = w, where s = c − ATy;
(3) (strong duality) LPWC and DPWC have optimal solutions x̄ and ȳ with g(x̄) = h(ȳ) and

cTx̄ − bTȳ = eTw.

Proof We have cTx − bTy = cTx − yTAx = (cT − yTA)x = sTx, so

g(x) − h(y) = xTs − γ (w) −
n∑

i=1

wi ln(xisi)

= −γ (w) +
n∑

i=1

(xisi − wi ln(xisi)).
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Optimization Methods & Software 3

Let v = x ◦ s ≥ 0. If wi = 0, the minimum possible value of vi − wi ln(vi) is obviously zero, and
this value occurs uniquely at vi = wi = 0. If wi > 0, it is easy to compute that the minimum value
of vi − wi ln(vi) also occurs uniquely at vi = wi and, therefore, vi − wi ln(vi) ≥ wi − wi ln(wi).
It follows that

g(x) − h(y) ≥ −γ (w) +
n∑

i=1

wi − wi ln(wi) = 0,

proving (1). This argument also shows that g(x) − h(y) = 0 if and only if v = x ◦ s = w, in
which case we also have cTx − bTy = eTw. It immediately follows that if x ◦ s = w, then x and
y are optimal for LPWC and DPWC, respectively, which is half of (2). To prove the other half
of (2), assume that x is optimal in LPWC. Since g(·) is convex and the constraints of LPWC are
linear, the Karush-Kuhn-Tucker (KKT) conditions must hold. The KKT conditions state that there
exists a vector ȳ so that s̄ = c − ATȳ satisfies s̄i − wi/xi = 0 if wi > 0, and s̄i ≥ 0, s̄ixi = 0 if
wi = 0. These conditions are obviously equivalent to s̄ = c − ATȳ ≥ 0, x ◦ s̄ = w, so ȳ is optimal
in DPWC and g(x) − h(ȳ) = 0. It follows that if y is any other optimal solution in DPWC, then
it must be that x ◦ s = w, as required to complete (2). To complete the proof of (3), we must only
show that an optimal solution of LPWC exists. Since LPWC is strictly feasible and the objective
value is bounded from below, this could only fail if the optimal value is not attained. It is easy to
see that the existence of a strictly feasible dual solution y bounds the components xi , i ∈ P . The
feasible region of LPWC with these bounds added can then be written as the sum of a bounded
polyhedron and the cone {x ≥ 0|Ax = 0, xi = 0, i ∈ P}, and clearly cTx ≥ 0 for any x in this
cone since DPWC is feasible. Discarding the cone, we obtain a bounded set which must contain
an optimal solution x̄ of LPWC. �

Parts (2) and (3) of Theorem 2.1 generalize the well-known characterization for points x and
s = c − ATy on the ‘central path’ for an LP problem and its dual, respectively, corresponding
to LPWC/DPWC with w = μe, where μ is a positive scalar. It is also worth noting that LPWC
is obviously equivalent to the same problem with (c, w) replaced by (θc, θw) for any θ > 0. It
is then easy to compute that if w �= 0, γ (θw) = 0 ⇐⇒ ln(θ) = γ (w)/eTw. It follows that the
objective in any instance of LPWC with w �= 0 can be rescaled so that the constant term that
appears in the objective of DPWC disappears.

3. Complexity results

In this section we describe the complexity of algorithms for solving LPWC/DPWC using the
theory of self-concordant functions developed by Nesterov and Nemirovskii [7]. We begin by
defining the necessary terminology.

Definition 3.1 Let F be a closed convex subset of �n and let f (·) be a C3, convex mapping
from Int(F) to �, where Int(·) denotes interior.

(1) f (·) is called a-self-concordant on F if |D3f (x)[ξ, ξ, ξ ]| ≤ 2a−1/2(D2f (x)[ξ, ξ ])3/2 for
every x ∈ Int(F) and ξ ∈ �n. If in addition f (·) tends to infinity for any sequence approaching
a boundary point of F , then f (·) is called strongly a-self-concordant on F .

(2) F(·) is called a ϑ-self-concordant barrier for F if F(·) is strongly 1-self-concordant on F
and, in addition, ∇F(x)∇2F(x)−1∇F(x)T ≤ ϑ for every x ∈ Int(F).

(3) Let F(·) be a ϑ-self-concordant barrier for F . Then, f (·) is called β-compatible with F(·) if
|D3f (x)[ξ, ξ, ξ ]| ≤ β(3D2f (x)[ξ, ξ ])(3D2F(x)[ξ, ξ ])1/2 for every x ∈ Int(F) and ξ ∈ �n.
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4 K.M. Anstreicher

The results in the following proposition are easy to prove using basic properties of the
logarithmic barrier and results given in [7].

Proposition 3.2 Let F = �n+, and for w ≥ 0, x > 0, let f (x) = − ∑n
i=1 wi ln(xi), F(x) =

− ∑n
i=1 ln(xi). Let wmin := mini{wi}. Then,

(1) f (·) is O(1)-compatible with F(·).
(2) If w > 0, then f (·) is wmin-self-concordant on F .

(3) If w > 0, then (1/wmin)f (·) is a ϑ-self-concordant barrier for F , for ϑ = eTw/wmin.

It follows from Proposition 3.2 and [7, Section 2.2.3] that if w > 0 and one attempts to solve
LPWC by directly minimizing g(·) using a damped Newton method, then the number of steps
required to obtain an O(1)-optimal solution will be proportional to �0

g/wmin, where �0
g is the

gap between an initial objective value g(x0) and the solution value for LPWC. This is exactly the
result obtained by Freund [4, Remark 7.2]1, who considered the problem of computing a weighted
analytic centre corresponding to LPWC with c = 0, w > 0, eTw = 1.

A better complexity result was obtained by Atkinson and Vaidya [2], who considered DPWC
with b = 0, wmin = 1. Atkinson and Vaidya developed a specialized algorithm based on the
concept of following a path of approximate maximizers yk corresponding to a sequence of weight
vectors wk , k = 0, . . . , K , where w0 = e and wK = w. The main result reported by Atkinson
and Vaidya [2] is that by appropriately rescaling wi to obtain wi+1, an O(1)-optimal solution
yK for DPWC is obtained for K = O(ln wmax), where wmax := max{wi}, and the work on each
iteration k is dominated by the computations required to execute O(

√
n) Newton steps. Hence,

the algorithm requires a total of O(
√

n ln wmax) Newton steps to obtain an O(1)-optimal solution
of the problem, starting with an approximation of the ordinary analytic centre.

The algorithms given in [4,5] and [2] assume that w > 0 and the linear term in either LPWC
or DPWC is zero. However, part (1) of Proposition 3.2 immediately implies that general results
on the complexity of barrier algorithms given in [7] can be applied to these problems. Consider,
for example, DPWC, and let

Ft(y) := −th(y) −
n∑

i=1

ln(ci − aT
i y), t ≥ 0.

It follows from [7, Section 3.2.2] that if y0 is the minimizer of F0(·) (i.e. the ordinary analytic
centre), and t0 > 0 satisfies

λ(Ft0 , y
0) := [∇Ft0(y

0)(∇2Ft0(y
0))−1∇Ft0(y

0)T]1/2 < δ, (1)

where δ > 0 is a suitable constant, then the number of Newton iterations required to obtain an
ε-optimal solution yK of DPWC is

K = O(
√

n|ln(εt0)|). (2)

To obtain an overall complexity result, it remains only to provide a lower bound on t0 > 0
satisfying (1). General results of this type are provided in [7], but below we give a bound tailored
to DPWC.

Theorem 3.3 Suppose that y0 is the minimizer of F0(·). Then, (1) is satisfied for 1/t0 = O(�0
b +

‖w‖), where �0
b := max{bTy|c − ATy ≥ 0} − bTy0.
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Optimization Methods & Software 5

Proof It is straightforward to compute that if s = c − ATy > 0, then

∇Ft(y)T = −tb + AS−1(e + tw),

∇2Ft(y) = AS−2(I + tW)AT,

where W = Diag(w) and S = Diag(s). Moreover, for s0 = c − ATy0, S0 = Diag(s0), we have
∇F(y0)T = AS−1

0 e = 0. It follows that

λ(Ft , y
0) ≤ t[bT(AS−2

0 (I + tW)AT)−1b]1/2 + t[wTS−1
0 AT(AS−2

0 (I + tW)AT)−1AS−1
0 w]1/2

≤ t[bT(AS−2
0 AT)−1b]1/2 + t[wTS−1

0 AT(AS−2
0 AT)−1AS−1

0 w]1/2

≤ t (�0
b + ‖w‖),

where the final inequality uses the fact that the Dikin ellipsoid

{y|(y − y0)T∇2F0(y
0)(y − y0) ≤ 1}

is contained in the feasible region of DPWC and bTy0 + [bT(AS−2
0 AT)−1b]1/2 is the maximal

value of bTy for y in this ellipsoid. �

Corollary 3.4 Let y0 be the minimizer of F0(·). Then, the barrier algorithm for DPWC can be
initialized at y0, t0 > 0, so that an ε-optimal solution of DPWC is obtained after O(

√
n ln((�0

b +
‖w‖)/ε)) Newton iterations, each requiring O(m2n) operations.

Note that if b = 0, Corollary 3.4 implies that starting at y0, an ε-optimal solution of DPWC can
be obtained in O(

√
n ln(nwmax/ε)) Newton iterations. This is exactly the complexity obtained

by Ye [13, Theorem 1], who generalized the primal–dual path-following algorithm for LP/DP to
apply to LPWC with c = 0. In addition, it is easy to show that Theorem 3.3 and Corollary 3.4
hold exactly as stated if the assumption that y0 is the minimizer of F0(·) is replaced with the
assumption that λ(F0, y

0) < δ′ < δ for λ(·, ·) given in (1), where δ − δ′ = O(1). Finally, when
w = 0, the result of Corollary 3.4 is exactly the well-known complexity of the barrier algorithm
applied to the dual linear programming problem DP.

It is well known that if the ‘partial updating’ technique is used [6,9], then the worst-case average
number of operations per iteration of the barrier algorithm can be reduced to O(

√
nm2 + nm).

However, there are cases where partial updating actually cannot improve the overall complexity of
the algorithm. One such situation, which arose in the application ofYe [12,13], is whenn = �(m2),
but each column of A has only O(1) non-zero entries.

An alternative to using partial updating, which attempts to reduce the work per iteration, is to
reduce the number of Newton iterations required to obtain an ε-optimal solution. This requires
a self-concordant barrier for FD = {y|ATy ≤ c} with a parameter ϑ = o(n). The volumetric
barrier2 [10] for FD is the function

V (y) = 1
2 ldet∇2F(s(y)) = 1

2 ldetAS(y)−2AT,

where s(y) = c − ATy, S(y) = Diag(s(y)) and F(·) is the logarithmic barrier for �n+. The
hybrid volumetric–logarithmic barrier is Vρ(y) = V (y) + ρF(s(y)), ρ > 0. Vaidya and Atkin-
son [11] used Vρ(·) with ρ = O(m/n) to construct a path-following algorithm that requires only
O((mn)1/4 ln(�0

b/ε)) Newton iterations to obtain an ε-optimal solution of DP, compared with
O(n1/2 ln(�0

b/ε)) iterations when using the usual logarithmic barrier F(·). It was shown in [1] that
the work per iteration for such an algorithm can be held to O(m2n) iterations, resulting in an over-
all complexity reduction when m = o(n). Self-concordancy results for the barriers V (·) and Vρ(·)
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6 K.M. Anstreicher

were obtained in [7, Section 5.5] and [1, Section 5]; the latter shows that for ρ = (m − 1)/(n − 1),
361

√
n/mVρ(·) is an O(

√
mn)-self-concordant barrier for FD .

Our interest here is to apply the barrier Vρ(·) to DPWC, but unfortunately the weighted
logarithmic barrier f (s(y)) that appears in the objective of DPWC is not O(1)-compatible
with O(

√
n/m)Vρ(·). However, a complexity reduction can still be obtained in the case where

|{i|wi > 0}| = O(m). To do this, we utilize the barrier

G(y) = 361

√
n

m
Vρ(y) −

r∑
i=1

ln(si(y)),

where ρ = (m − 1)/(n − 1) and we assume that wi = 0, i > r .

Proposition 3.5 Assume that wi = 0, i > r . Then,

(1) G(·) is an O(
√

mn + r)-self-concordant barrier for FD ,
(2) − ∑r

i=1 wi ln(si(y)) is O(1)-compatible with G(·).

Using Proposition 3.5, we can obtain a complexity result for the barrier algorithm applied to
DPWC using Gt(·) in place of Ft(·). To accomplish this, we require a result similar to that given
for Ft(·) in Theorem 3.3. For simplicity, we give this result assuming that b = 0, which holds for
the application in the next section.

Theorem 3.6 Assume that b = 0, wi = 0 for i > r and the first r columns of A have rank m.
Let y0 be the minimizer of G0(·). Then, λ(Gt0 , y

0) < δ = O(1) is satisfied for 1/t0 = O(‖w‖).

Proof Using b = 0 and the fact that ∇G0(y
0) = 0, we have

λ(Gt , y
0) = t[wTS−1

0 AT(∇2G(y0) + tAS−2
0 WAT)−1AS−1

0 w]1/2

≤ t

[
wTS−1

0 AT

(∑r
i=1 aia

T
i

(s0
i )

2

)−1

AS−1
0 w

]1/2

≤ t‖w‖,

where the final inequality uses the fact that wi = 0, i > r . �

Corollary 3.7 Assume thatwi = 0, i > r and the first r = O(m) columns ofAhave rankm. Let
y0 be the minimizer of G0(·). Then, if b = 0, the barrier algorithm using Gt(·) can be initialized at
y0, t0 > 0 so that an ε-optimal solution of DPWC is obtained in O((mn)1/4 ln(‖w‖/ε)) Newton-
like iterations, each requiring O(m2n) operations.

The statement of Corollary 3.7 refers to ‘Newton-like’ iterations as opposed to ‘Newton’ itera-
tions because some care must be taken when working with V (·) to ensure that the work per iteration
remains O(m2n); see [1] for details. When m = o(n), the complexity result of Corollary 3.7 is
better than the result of Corollary 3.4 with b = 0. In addition, in some situations, it may be pos-
sible to reduce the upper bound of O(m2n) operations per iteration required in both cases. We
consider such an example in Section 4.
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Optimization Methods & Software 7

4. The Fisher equilibrium problem

The Eisenberg–Gale formulation of the Fisher equilibrium problem, with linear utility functions,
is [12,13]

(EGF) min −
p∑

i=1

wi ln ui

s.t.
p∑

i=1

xij = 1, j = 1, . . . , q,

ui −
q∑

j=1

uij xij = 0, i = 1, . . . , p,

ui ≥ 0, xij ≥ 0 ∀i, j,

where wi is the initial endowment of consumer i and uij is the marginal utility for consumer
i’s consumption of good j . We assume that w > 0, U ≥ 0, Ue > 0, eTU > 0. Clearly, EGF is
an instance of LPWC with n = pq + p = p(q + 1), m = p + q, c = 0. It is straightforward to
compute that the dual of EGF is the problem

max γ (w) − eTy +
p∑

i=1

wi ln zi

s.t. yj − uij zi ≥ 0, i = 1, . . . , p, j = 1, . . . , q,

z ≥ 0.

Note that the feasible region of this problem is a convex cone; if (y, z) is feasible, then (θy, θz)

is also feasible for any θ ≥ 0. Using this fact, it is easy to show that the optimal solution of the
problem must have eTy = eTw and, therefore, the dual of EGF may be rewritten in the form

(DEGF) max γ ′(w) +
p∑

i=1

wi ln zi

s.t. yj − uij zi ≥ 0, i = 1, . . . , p, j = 1, . . . , q,

eTy ≤ eTw,

z ≥ 0,

where γ ′(w) = γ (w) − eTw = − ∑p

i=1 wi ln(wi). Thus, DEGF corresponds to an instance of
DPWC with a bounded feasible region and b = 0. For i = 1, . . . , p, let Ũi be the p × q matrix
whose ith row is the ith row of U , and all of whose other entries are zero. The constraint matrix
A for the problem DEGF then has the form

A =
(

0 −I −I · · · −I e

−I Ũ1 Ũ2 · · · Ũp 0

)
,

where the first block ofq rows ofA corresponds toy and the remaining block ofp rows corresponds
to z. Note that each column of A, except the last one, has at most two non-zero entries.

To simplify the statement of complexity results for DEGF, we assume henceforth thatq = O(p).
Applying Corollary 3.4, the barrier algorithm based on the usual logarithmic barrier F(y, z),
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8 K.M. Anstreicher

suitably initialized, requires O(
√

n ln(‖w‖/ε)) = O(p ln(‖w‖/ε)) Newton iterations to obtain an
ε-optimal solution, and it is easy to show that due to the structure of A, the work per iteration is only
O(m3) = O(p3) operations. However, DEGF satisfies all of the assumptions of Corollary 3.7,
with r = p + q = m. It follows that if the barrier G(y, z) is used in place of F(y, z), then the
barrier algorithm, suitably initialized, requires only O((mn)1/4 ln(‖w‖/ε)) = O(p3/4 ln(‖w‖/ε))
Newton-like iterations to obtain an ε-optimal solution, and it is easy to show that the work per
iteration remains O(p3).
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Notes

1. The bound in [4, Remark 7.2] does not explicitly appear in the published version [5], but is a simple consequence
of [5, Lemma 6.2].

2. In much of the literature on the volumetric barrier, the variables m and n are interchanged, and the constraint matrix
A is replaced by AT.
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